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Abstract. A singer sings a song. But a record player can not sing. The
record it plays captures only the output from the singer’s ability to sing,
not the ability itself. Likewise, a program does not capture its program-
mer’s ability to program. If an AGI system is expected to possess the abil-
ity to write that program, then that program can not be the AGI system.
If the AGI system is not expected to possess that ability, then it would
not be an AGI system. Proposed in this paper is a self-programming AGI
system where programs result as a side effect of an unrelated dynamical
process. The system is supported by a new mathematical theory, where
a partially ordered set is used as a universal knowledge base, and a func-
tional is defined over the knowledge base. When the dynamical process
minimizes the functional, the knowledge becomes organized and struc-
tures emerge. The structures are, in turn, a partially ordered set, and
have their own functional. Iteration results in a nested inheritance hier-
archy like the ones used in object-oriented programs. This hierarchy is
the resulting program. There is evidence suggesting that the brain works
in the same way. The dynamics is easy to simulate on any computer.

Keywords: AGI, self-programming, emergence, brain, intelligence

1 Introduction

This introductory Section examines several major technologies, some critical for
the future of computational autonomy, that have been slow to develop and less
than successful, and argues that they require no less than a full automation of
the human analyst [1], and, as such, are positioned at the very heart of AGI.

Self-programming. In spite of enormous gains in computer power and math-
ematical methods, computers still depend on humans as they always have. Ex-
amples are the robot that serves wine from a bottle but the instruction that
serves the wine precedes the one that removes the cork, and the Mars Rover
that ignores the dancing martian [2]. Deep Blue plays chess better than any of
its creators. Watson plays a quiz game better than any of its creators. But can
they play checkers, or even learn how to? Their creators can. Self-programming
programs do not fare any better. Ikon Flux [2] defines a world of which it itself
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is a part and tries to learn from it and control it by constantly reprogramming
itself. It can control the stage of a theatrical performance. But can it learn,
without human intervention, how to control the Mars Rover? Or how to play
tic-tac-toe? Its creators can. Its authors report difficulties with full automation,
particularly with the two central issues we all have difficulty with: refactoring
and integration.

Refactoring is a universal phenomenon. Refactoring [3] is a bottom-up
procedure where an analyst finds analogies in data and uses them to associate
and organize the data and to create structures or objects that are functional
and understandable. The term was initially reserved for object-oriented (OO)
software, but was later extended to non-OO software [4] and non-software sys-
tems such as the law [5], and even bacteria [6]. Refactoring was recognized as a
universal phenomenon. We all practice refactoring all the time for tasks such as
planning, where certain information is given and a plan needs to be prepared.
However, refactoring has not been automated, not even for OO software. Tools
are available to help with routine tasks, but only a human analyst knows how to
find the analogies and organize the information into structures. The ability to
refactor and form objects has not been captured in programs and remains privy
to the human brain.

Systems integration is also a universal phenomenon. Closely related
to refactoring is Systems Integration, a top-down procedure for combining two
systems, usually man-made and equipped with interfaces. The systems are linked
by operationally interconnecting their interfaces, and are expected to behave as
one. Integration is a general engineering practice, routinely used for all kinds
of systems. But integrating the interfaces is not easy. Integration is practiced
by human integration engineers. It has so far resisted full automation, and is
currently the subject of intense investigation, just as refactoring used to be
about 20 years ago. Tools and methods have been developed, particularly in the
field of narrow AI, but they require human supervision.

Formal mathematics. Formal mathematical methods such as mathematical
logic and inductive inference, are very powerful theories, indeed. But in AGI,
one should be more concerned about the abilities of the scientists that created
the theories, or rather, the abilities of their brains. If it were possible to capture
the abilities, then the theories would follow. But that has not happened yet. The
abilities are not in the theories, and as a result, the theories have not been as
productive as they were expected to be.

Associative memories, ontologies, and the semantic web. These prob-
lems are currently of enormous practical interest, and they all rely on one core
issue: the ability to find analogies in knowledge. Once the analogies are found,
they can be used to create associations and to organize the knowledge and form
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structures. But analogy-making remains a unique ability of the human brain,
not yet captured in any tool. As a result, associative memories, ontologies, and
the semantic web are all being developed manually, with help from the tools.

The common root. Just as the singer’s ability to sing is not captured in the
record, or a programmer’s ability to program is not captured in the program,
even a program that writes other programs or assembles new programs out of
existing ones remains the product of a human programmer’s ability to program.
Programs and records can not capture the abilities of their creators. Records,
robots, programs, self-programming and self-organizing systems, refactoring and
integration tools, formal mathematical methods, ontologies, the semantic web,
all fail to capture their creator’s ability to create them. Without a human analyst,
they suffer of a severe limitation in their analogy-making capabilities, and are
forced to resort to humans every time they need analogies. It has not been
possible to fully automate any of them.

It is not possible to engineer our way out of these problems. The technologies
require no less than a full automation of the human developer, and are positioned
at the very heart of AGI. At the present point, they are still in the realm of
mathematics, not engineering, and they require a mathematical solution.

The present work. Around 2006, motivated by my interest and expertise in
refactoring, and already aware of the canonical representation of systems (see
the canonical matrix in Eq. (2) below), but unable to explain why refactoring
was so easy for me and so difficult to automate, I decided to find out. I selected
an 18-line C program describing a simple problem of Physics [7], scrambled it
beyond recognition, prepared the corresponding canonical matrix, and proceeded
to refactor the program in small steps while at the same time observing the effect
of my decisions on the matrix. After hours of doing the same exercise over and
over again, I suddenly noticed that each one of my refactoring decisions led to a
symmetric permutation of the matrix that caused the A’s to move closer to the
diagonal. The average distance of the A’s to the diagonal is a functional (see §2).
As far as I know, this was the first time ever that an observation was made of a
high cognitive function of the brain controlled by a mathematical functional.

Soon after that, I was able to simulate the process on a PC, and to carry out
a number of computational experiments to make sure that the discovery applied
not just to Physics but also to other problem domains, such as object-oriented
analysis and design, the recognition of images, refactoring, and parallel program-
ming. It did, all the experiments confirmed the finding. Three of the experiments
are discussed in [8], and one more is fully expanded in that publication.

The importance and scope of this discovery can not be over-emphasized. It
represents a rigorous mathematical solution, obtained from first principles, not
an informed guess based on phenomenology, or an engineering compromise. It
does not require any previous intelligence about the problem at hand, just the
problem as observed. It is not a computer program, but it can be easily simulated
by one and implemented on any computer. It is the core process that finds the
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analogies and creates the associations, the organization, and the structures. It
is the common root for all the critical technologies of the future just mentioned.
This process is called emergent inference. Will it allow the full automation of the
technologies? I have no doubts it will, because once the abilities are captured,
the technologies will follow. But the only way to make sure is to automate them.

The goal of AGI is to design systems capable of human-level intelligence.
That statement alone defines the human brain, and more in particular its high
cognitive functions, as a reference point to evaluate AGI projects. It also puts
natural processes on the map, and raises the question of the origin of intelligence.
How can a natural system minimize a functional? All intelligent systems are
also dynamical systems, and they all have one thing they try to minimize: their
resources. If the functional represents a resource used by the natural system, then
the dynamics of the system will minimize the functional and find the analogies,
the associations, the organization and the structures which represent the abilities
and the intelligence. Which brings us to a very important point. The dynamical
process in the natural system is only trying to preserve resources. Its purpose is
not to develop abilities or intelligence, and it certainly lacks any intelligence of
its own. Intelligence arises as a side-effect of a natural process. It can also arise
as a side effect of an artificial process.

Think of it a little. It had to be that way. How else can intelligence originate?
If intelligence originated only from previous intelligence, then there would have
to be something like the first intelligence. But where is it? In the DNA? The DNA
has a picture of the dancing martian? The only other choice, is that intelligence
originates as a side effect from a process that is not trying to originate it.

Section 2 is a mathematical introduction. Section 3 discusses practical as-
pects and meaning of canonical systems, and the notion of host-guest systems.
Section 4 presents a simple but working model of the brain, that demonstrates
intelligence as a side effect of a dynamical process that tries preserve resources.
Section 5 presents the conclusions.

2 Mathematical background

A knowledge base is a computational structure that can represent any system
of interest, including its dynamics and the changes the dynamics causes on the
system, as well as any procedures that affect the knowledge base, their outputs,
the procedures that affect the outputs, and so on. The knowledge base must
satisfy the property of closure. This work proposes a partially ordered set as
a universal knowledge base. A sketch of a proof that a partially ordered set
satisfies the requirements can be found in previous publications [8, 9]. Software
is particularly easy to convert to partially ordered set format, about the same
effort as compiling the code [10]. In addition, partially ordered sets have an
unusually rich collection of mathematical properties. For example [8]:

S = {a, b, c, d, e, f, g, h, i, j} (1)
ω = {a < c, b < e, c < j, d < f, e < g, f < h, g < i, h < i, i < j}
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is a partially ordered set, where S is the set and ω is the partial order, which
consists of relations of the form α < β, or “α precedes β”, where α, β ∈ S.
The nature or meaning of the elements of S is irrelevant. They can be anything,
such as boolean values, functions, computer programs, or entire systems. Or
other partially ordered sets. In the example, they represent tasks on a parallel
computer.

Let π be a legal permutation of S. A permutation is said to be legal if
it does not violate the partial order. A convenient representation of a par-
tially ordered set under a legal permutation π is the canonical matrix. The
following is the canonical matrix for the example of Eq. 1 under permutation
(d, a, b, c, e, f, g, h, i, j):

d a b c e f g h i j
d C
a C
b C
c A C
e A C
f A C
g A C
h A C
i A A C
j A A C

(2)

The matrix is square, lower triangular, and sparse [11]. The elements of S are
listed as headers for rows and columns. All diagonal elements are marked with
C, and the relations in ω are marked with A, as follows: if α < β is a relation
in ω, then element (β, α) of the matrix is marked with A. The matrix has the
important property that all A’s are in the lower triangle if and only if π is legal.

Let Π be the set of all legal permutations of S. A functional L(π), called
the cost of permutation π, is now defined over set Π as follows: (1) number the
elements of S in the order they appear in π, starting with 1, and let ν(α) be the
number assigned to some element α ∈ S; (2) if α < β is a relation in ω, then
the cost of that relation is ν(β) − ν(α); and (3) L(π), the cost of permutation
π, is twice the sum of the costs of all relations in ω. A functional is a map that
assigns a number, not necessarily different, to each permutation. In this case, the
number is a positive integer. For example, permutation (b, e, g, d, f, h, i, a, c, j) is
legal. The numbers assigned to elements of S are ν(b) = 1, ν(e) = 2, ν(g) = 3,
etc. The cost of this permutation is 28.

The functional plays the role of a hash function on the space Π of all legal
permutations. It partitions Π into subsets, each containing permutations with
the same cost. It then becomes possible to minimize the functional, which means
finding the permutation/s with the minimum cost. Minimizing the functional is
not always easy, because Π may be very large. Montecarlo, or other random
search techniques can be used. When the functional L(π) is minimized over Π,
a subset of permutations, say Πmin ⊂ Π, is found at the minimum. Subset Πmin

has the following remarkable mathematical property:
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Subset Πmin is organized, and is either a permutation group of set S or a
generator for a permutation group of S. In either case, it induces a block
system in set S.

A block system is a partition of S into blocks, or parts, that have the property
of being stable, meaning they are invariant under the action of Πmin. In other
words, the same blocks are found in all the permutations. The block system
constitutes structure. To each block there corresponds an equivalence relation,
which simple says that, if α, β ∈ S are two elements of S found in the same block
in one of the permutations, they are in the same block in every permutation of
Πmin. The equivalence relations are a new form of inference, called emergent
inference. They are inference because they are statements of truth, they reveal a
new mathematical property that was not explicit in the original data. And they
are called “emergent” because the process that finds them is one of emergence
[12]. It has been proposed that emergent inference is the key to intelligence [8].

It is very, very important to notice that the process that elucidates the emer-
gent inference is completely unrelated to the purpose. The process only searches
for permutations with minimum cost. Its purpose is most definitely not to find
any structures or logical relations, yet if finds them as a side effect. Indications
exist that the brain uses a similar mechanism to create structures and generate
intelligent behavior, see §4.

But there is more. The block system is itself a set, and it has a partial
order induced by the original order ω. A mechanism of feedback naturally arises,
where structures are repetitively fed back to the search process, and new, more
compact and higher-level structures emerge, giving rise to a whole hierarchy of
nested structures, such as the 7 level hierarchy shown in the UML diagram of
Fig. 1(b) of [8]. Feedback has long been considered as one of the cornerstones of
intelligence. In object-oriented programming, the blocks correspond to objects
and the hierarchies to inheritance hierarchies.

In the example, the minimum cost is 28, with only 2 permutations:

(b, e, g, d, f, h, i, a, c, j) (3)
(d, f, h, b, e, g, i, a, c, j)

There are 6 blocks in the block system, 4 of which are trivial. They are (beg)
(dfh) (i) (a) (c) (j), which are clearly a stable structure because they appear in
both permutations. Blocks (beg) and (dfh) are the inference that has emerged
in the first iteration. They correspond to the output of the “intelligent” process.
Feedback results in 7 levels of structure, and the progressive build up of intel-
ligence can literally be seen in each one of them. An entire OO analysis and
design, obtained with full autonomy, no human intervention. Converting this
automatically to a program, say in Java or C#, should be straightforward.

But how does all this apply to our purposes? Recall that emergent inference
applies to all systems. I can’t publish all systems, but I did what I could and I
solved and published 4 very different systems: a simple problem of Physics [7],
an extensive problem of refactoring and OO design in Java [10], a problem of
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Fig. 1. Traditional development cycle for a computer program. Initially, only the solid
arrows are installed. A human analyst’s brain provides the emergent inference. Frequent
human intervention is required. When development is complete, the analyst and the
solid arrows are removed, and the dashed arrows are installed. Emergent inference is
no longer available, and self-programming will not work. In the environment proposed
in this paper, “brain” refers to the artificial emergence inference process. Both sets
of arrows are permanently installed, brain and computer are independent processes
performed by separate processors, and a self-programming capability remains in place.
This diagram is simplified, the real one is a directed graph with many interconnections.

image recognition [13], and a parallel computer [8]. Researchers who want to
solve other problems, or revisit the ones I have solved, are welcomed.

3 Canonical systems and the host-guest concept

A canonical system is one where knowledge is represented as a partially or-
dered set, and an ongoing dynamical process exists, either natural or artificial,
that constantly minimizes the functional and produces organized structures by
emergent inference. The system is part of its environment and learns from it,
and tries to adapt by constantly reprogramming itself, just like Ikon Flux. Un-
like Ikon Flux, the canonical system is self-organizing, self-programming, and
naturally integrated.

The input to the canonical system consists of teacher instructions (see §IV
of [10]), provided by a teacher or obtained from sensor input, that contains
references to structures already existing in the canonical system (hence the need
for a bootleg sector), and is equivalent to one or several relations in the partial
order. As the system learns and forms more advanced structures, these can in
turn be referenced in the instructions, and the learning process becomes more
powerful. The situation very strongly reminds of an infant that begins by learning
from its senses, grows into a child that receives instruction from a school teacher,
and into a college student that assimilates advanced knowledge. The structures
that the canonical system generates are the new programs.

The nested hierarchy is an ontology [14], but not just for the domain of
interest but also for particular objects in it (for example, an image in an image
recognition domain). Ontology generation in the canonical system is natural.
Just as any ontology, the canonical system can be used from top-down as an
associative memory, and from bottom-up to match patterns.
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Is the canonical system a complete AGI system? I believe it is. Here is the
argument that supports my conjecture: (1) any system can be represented as a
partially ordered set, and (2) if any additional system is needed for AGI com-
pleteness, that system can be represented as a partially ordered set and inte-
grated into the original one. There are many more things that can be done with
canonical systems, for example several areas where they can easily outperform
humans have been identified and published in the literature. But this paper must
remain focused on its original goals.

The host-guest concept [9] captures the fact that two different, well-differentiated,
and independent processes exist in a self-programming system. One is the dy-
namical process that minimizes the functional and causes the inference to emerge
as a side effect. This process is equivalent to refactoring and does not change the
program or affect execution. It can run concurrently in the background or on a
separate processor. Figure 1 illustrates the concept.

The other process is the actual execution of the program. This process relies
on the functionality stored in the connections of the canonical system, not on
its organization or structures, and can run even while the connections are being
reset, provided of course the connections do not change.

The next Section introduces a simple model of the brain and demonstrates
how emergent inference arises as a side effect of resource preservation.

4 A viable brain model

A model is an abstraction of a real-world system where only some features of
interest are captured and the rest are ignored. Each model has a purpose, which
determines how the abstraction is made, and a scope, which is the domain of
problems the model can solve. The model does not have to resemble the real-
world system. All it has to do is to recognize the features of interest and produce
results that agree with observation.

The purpose of the present model is to demonstrate how emergent inference
works in the brain. The model consists of a set of interconnected neurons. Each
neuron has only one capability: it fires when its upstream neurons fire. And
each connection also has only one capability: it pulls from the neurons to make
them come closer and save resources. The partially ordered set for this model is
straightforward. S is the set of neurons, and ω is the order of firing. If neuron
D fires only when its upstream neurons A, B and C fire, then A < D, B < D
and C < D are relations in ω. This model is not a neural network, there are no
weights associated with the connections, and no feedback algorithms.

To interpret the model, I’ll show next how it relates to what was said in
§2 and §3. First, since the nature of the elements of S is irrelevant (it doesn’t
matter that they are neurons), the only place where information can be stored
is the partial order ω. It follows that ω is the memory. Knowledge is stored
in the connections, something that neuroscientists have been saying for years.
A relation in ω, which involves 2 elements, corresponds to a connection in the
model, which involves 2 neurons. The only property of the relation, its cost,



Emergent inference 9

corresponds to the only property of a connection, its length. The partial order
ω, which involves all elements, corresponds to the network, which involves all
neurons, and the permutation of S corresponds to the physical arrangement
of the neurons. Two neurons that exchange their positions to save resources
represent a step in the search for another permutation with a lower cost. The
network stabilizes only when the total length of all connections is minimized,
which is precisely where the functional attains its minimum value.

Under this dynamics, groups of neurons with many connections will come
closer together, while pushing neurons with fewer connections further apart.
Physical clustering takes place. Clusters of strongly interconnected, weakly cou-
pled neurons physically form. This behavior has in fact been experimentally
confirmed [15]. The clusters are called neural cliques, and they have been exper-
imentally observed and characterized in the brain, thus providing the strongest
confirmation yet that emergent inference actually happens in the brain.

Once the neural cliques have formed, the process continues, but now the
“neurons” are the neural cliques. Inter-click connections pull from the cliques,
causing them to cluster into higher order cliques. This is a process of natural feed-
back, and it continues until the entire organ is formed. There is no experimental
verification for the feedback. The brain is a very simple machine. Contrary to
what David Eagleman says [16], the brain is very simple, but it is still powerful
enough for us to understand it.

5 Concluding remarks

This paper has proposed the argument that computer programs are written
by human developers, and that a full self-programming capability requires no
less than a full automation of the human developer’s high brain functions. The
paper has also argued that, by the definition of AGI, such an automation can be
achieved only by a fully capable AGI system. This paper has further argued that
the current engineering approach to self-programming, illustrated in Fig. 1, does
nothing but to shift the problems caused by the absence of the human developer
from one place to another. The approach will inevitably reach a point where
refactoring and integration must be applied, and further automation will become
impossible beyond that point. Refactoring and integration are the two critical
technologies where the absence of the human developer becomes immediately
manifest, and they have not been automated yet.

To address these limitations, and based on a reported experimental observa-
tion of a high cognitive function of the human brain being controlled by a math-
ematical functional, the paper has also proposed that the recently announced
theory of emergence should be applied. In the theory, a partially order set is
used as the knowledge base, and a mathematical functional is defined, the mini-
mization of which by an unrelated dynamical process originates a new, recently
discovered type of logical inference, called emergent inference. Emergent infer-
ence finds analogies in the available knowledge, and uses the analogies to organize
the knowledge into structures, an entire ontology. This process is equivalent to
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refactoring, and results in a system that is naturally self-organized, naturally
self-programming, and naturally integrated. This system is also proposed as the
fundamental AGI system. To support the findings, several computational exper-
iments are described, and a simple but functional model of the brain is proposed.

The conclusions reached in this paper are easy to implement in practice on
any computer. The implementations may or may not be very efficient, though,
unless until suitable self-organizing hardware is developed, perhaps following the
general ideas proposed for the brain model of Section 4.
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