
Resource-Bounded Machines are Motivated to be

Effective, Efficient, and Curious
�

Bas R. Steunebrink,1 Jan Koutnı́k,1 Kristinn R. Thórisson,2
Eric Nivel,2 Jürgen Schmidhuber1

1 The Swiss AI Lab IDSIA, USI & SUPSI, 2 Reykjavik University

Abstract. Resource-boundedness must be carefully considered when designing
and implementing artificial general intelligence (AGI) algorithms and architec-
tures that have to deal with the real world. But not only must resources be rep-
resented explicitly throughout its design, an agent must also take into account
their usage and the associated costs during reasoning and acting. Moreover, the
agent must be intrinsically motivated to become progressively better at utilizing
resources. This drive then naturally leads to effectiveness, efficiency, and curios-
ity. We propose a practical operational framework that explicitly takes into ac-
count resource constraints: activities are organized to maximally utilize an agent’s
bounded resources as well as the availability of a teacher, and to drive the agent
to become progressively better at utilizing its resources. We show how an exist-
ing AGI architecture called AERA can function inside this framework. In short,
the capability of AERA to perform self-compilation can be used to motivate the
system to not only accumulate knowledge and skills faster, but also to achieve
goals using less resources, becoming progressively more effective and efficient.

1 Introduction

Real-world intelligent systems are bounded by resources, which are consumed during
operation but are available only in finite amounts. However, (working) definitions of
intelligence do not always stipulate that agents necessarily have to cope with insufficient
knowledge and resources [4], leading to different views on which models of behavior
can pass as “intelligent.”

Many theoretical models of learning and intelligent behavior do not take into ac-
count resource constraints, or come with proofs of optimality that only work in the
limit, usually of time. But because of the inherently limited nature of resources, such
proofs say little about practical worth. For example, Q-Learning has been proved to
converge to the optimal policy (under certain assumptions) [15], but there is no real-
time limit on how long such convergence will take, i.e., another non-optimal method
may produce a better solution before a certain fixed deadline. In fact, when certain RL
methods are combined with nonlinear function approximators, the convergence guaran-
tee no longer holds or becomes an open question, yet they work better (and thus more
intelligently?) on many practical tasks.
� This research was funded by the EU projects HumanObs (FP7-ICT-231453), IM-CLeVeR

(FP7-ICT-231722), and Nascence (FP7-ICT-317662), and by SNF grant #200020-138219.



Table 1. The naming scheme. The leftmost column lists the fundamental resources that constrain
real-world agents. The compression (or usage minimization) of each of these resources leads to
the properties listed in the second column. Resource-bounded agents should be driven to attain
these properties, but only for the drive to learn there exists an appropriate term: curiosity. Un-
fortunately the English language contains no suitable single words to describe the drive to be
energy-efficient or the drive to be time-effective, but they are important drives nonetheless. The
rightmost column lists the activities that can be performed to obtain more of the resources listed
in the leftmost column. The Work–Play–Dream framework is described in section 5.

Resource Compression Drive To obtain more

Energy Efficiency — Work
Input Learning Curiosity Play
Time Effectiveness — Dream

As another example, AIXI is claimed to model the most intelligent decision making
possible [2], yet its algorithm is incomputable and thus AIXI is incapable of producing
any decisions at all in this universe. Even its computable variant AIXItl suffers from an
exponential factor, which prevents it from making timely decisions in interesting real-
world settings, where available computational power is limited. Our criticism here is
rooted in the fact that the definition of intelligence behind AIXI, as detailed in [5], does
not mention resource constraints. In this paper we follow Wang’s working definition
[13], which does so.

We argue that an intelligent system that has to function in the same, complex real
world in which humans operate, must abide by the following principles by design:
1. explicitly acknowledge that there are resource constraints,
2. identify which are those constrained resources (section 2),
3. strive to minimize their usage / maximize their utilization (sections 3 and 4), and
4. explicitly take them into account during all activities, including reasoning and act-

ing, and order activities around their utilization (section 5).
Having just done point 1, we go into each of the other principles in the referenced
sections. Finally, an actual system that can do all four points is presented in section 6.

2 Fundamental Resources

Real-world intelligent systems rely on the following, constrained resources:
Energy: To perform work, a machine needs to expend energy. Many “wall-plugged”

machines need not worry about their electricity consumption, but autonomously roam-
ing battery-operated machines do. Material resources, including memory space, are
strictly speaking a manifestation of energy, but if desired they can be counted sepa-
rately in certain practical settings.

Input: The set of input data since the first activation of the machine is often referred
to as the history of observations. For succinctness we will just use the term input. It can
also be seen as a flow of information from outside the machine through particular sen-
sors to a particular part inside the machine (namely memory, or some reactive module).
Input is a resource because the real world cannot be observed entirely and instantly, so
the machine must choose which limited set of observations to pay attention to in the
present and what observations to try and elicit in the future [1].



Time: All activities take time, even idling. We insist that time is a resource origi-
nating from the external environment, meaning that the passage of time must always be
measured using an external clock, and not by counting e.g. internal processor cycles.
This means that the speed of the computational architecture does matter, and likewise
slowdowns in algorithms that are normally hidden when discussing them using the big-
O notation also do matter.

See also table 1, which summarizes the terminology used in this paper.
It should be noted that all resources are related: sensing, reasoning, and acting all

consume energy, input, and time. In fact, the consumption of energy and time is in-
versely related in many situations: a task can be completed faster by consuming more
energy, or energy can be conserved by taking it slower. There are exceptions, however,
such as a robot trying to swim through a dilatant fluid (e.g., cornstarch mixed with wa-
ter). But we must realize that energy and time cannot always be exchanged—certain
deadlines cannot be met no matter how much energy is available.

3 Resource Compression: What and Why

Let us first introduce the following terminology:
– A machine that is compressing its energy usage is said to be efficient.
– A machine that is compressing its input is said to be learning.
– A machine that is compressing its time usage is said to be effective.

It seems obvious that the usage of resources must be minimized, but let us consider the
most important reasons nonetheless. Compression of both energy and time usage is ben-
eficial because getting tasks done more efficiently and faster often results in higher (ex-
ternal) rewards. Moreover, spending less energy and time on current tasks leaves more
time and energy for future tasks, since they are finite resources. Energy and time usage
compression is thus beneficial for ensuring survival and longevity. Another way to ben-
efit from efficiency and effectiveness is that they leave energy and time for (curiosity-
driven) exploration, which provides an opportunity to perform more learning. It should
be noted that energy and time usage may have to be traded off, i.e., there may be a
Pareto front of efficiency and effectiveness. In many practical settings some resources
will be more precious than others. For example, time is generally more precious than
memory space,1 meaning that if a machine can work substantially faster by using a bit
more memory, it should be motivated to do so.

The compression of input is beneficial because the alternatives are either to delete
all observations—which leads to a purely reactive agent—or to store everything, which
is infeasible for resource-bounded machines.2 Even if storing all observations were
feasible, it is unnecessary because the real world is assumed not to be random, but to
exhibit certain regularities. In fact, compression of data is equivalent to learning, which
is essential for any intelligent system. In the context of resource utilization, learning is

1 Memory / storage space can be seen as a particular manifestation of energy.
2 Although advances in storage techniques may leave room to store all observations in a

database, it must be realized that there will probably also be advances in sensor resolution,
so it may turn out that the rate at which sensors can generate data grows too fast to store
everything after all.



important because it can lead to the knowledge necessary for compressing energy and
time consumption on future tasks.

Let us now say that a machine’s behavior is acceptable if its resource usage stays
within certain thresholds specified per resource, but it is better to use less resources.
If a machine is pursuing a certain goal, it is said to have failed as soon as a threshold
is crossed for any of its resource usages. For example, a deadline can be specified for
a goal by setting a threshold on the maximum amount of time that may elapse. Or a
budget can be specified for a goal by setting a threshold for the maximum amount of
energy that can be spent. Because all resources are ultimately limited, and because we
have a lot of work to be done by machines (with their resources also being shared by
humans), each machine should be driven not just to perform acceptably, but to perform
better and better. Therefore becoming better—in the technical sense defined above—
should be implemented as an intrinsic motivation for machines.

4 Driven by Resource Compression Progress

There are two ways to minimize resource consumption: through (1) knowledge and
(2) architecture. Knowledge allows a machine to select efficient and effective actions
given what it has learned so far about the external environment and its own operation.
Although all intelligent agent architectures must encode the system’s knowledge and
skills in some way, more powerful architectures allow knowledge and skills to be re-
encoded to maximize efficiency and effectiveness. In the following two subsections,
both methods for achieving resource compression are discussed, respectively.

4.1 The Urge to Learn: Curiosity

Artificial curiosity [9, 8] urges an agent to learn new phenomena through better com-
pression of the growing history of observations (i.e., Input). An internal reward for “in-
terestingness” is defined to be proportional to the first derivative of the negative number
of bits over time needed by an agent’s compressor to describe a piece of input. Curiosity
is then the drive to select actions that maximize the expected future interestingness.

The principle of curiosity assumes that there are regularities in both the environment
and in the tasks that need to be performed in it. Such an assumption is definitely reason-
able among real-world environments and most of the simulated ones. An environment
responding in completely random ways makes any intelligent system hopeless as the
best agent strategy would be a random one too. It is also assumed the environment is
not too adversarial, or that danger can be avoided through “parental” supervision.

Curiosity is a way for an agent to “fill in gaps” in its knowledge, in anticipation
of unexpected events and tasks for which it wants to be better prepared. Although it
may seem impossible to prepare for the unknown, it is the assumption of regularity that
makes curiosity a reasonable exploration strategy, because then it can be expected that
regularities discovered earlier have a chance of being useful for solving future tasks.

Although in certain special cases it may be possible to perform exploration while
trying to solve a task (which could be called creative problem solving; cf. [10, 11]), there



will usually be both resource and situational3 constraints preventing such simultaneous
balancing of exploration and exploitation from being feasible.

4.2 The Urge to be Effective and Efficient

Knowledge about the environment and skills obtained through curiosity can be ex-
ploited to achieve known and novel tasks using less resources, notably energy and time.
However, simply knowing how to perform a task more effectively and efficiently does
not necessarily make an agent capable of doing so. For example, consider a person
learning to tie shoelaces for the first time. He is explained the routine and then manages
to reproduce a proper knot, but taking ten seconds to do so. To bring the task execution
time down to, say, three seconds, the apprentice does not need more knowledge—just
more training. What happens in humans as a result of such training? The representa-
tion of the skill of tying shoelaces is moved from a high-level system (here probably
the motor cortex) and re-encoded in a low-level system, where the skill is consolidated
as what is known as muscle memory. The result is that the initial, costly, “cognitive”
routine for tying shoelaces can now be executed by a fast, automatized routine.

An analogy with computers can be made here by contrasting interpreted code with
compiled code. An interpreter typically runs code presented in a high-level form and
can provide additional services such as extensive debugging tools. In contrast, compiled
code consists of processor-specific instructions which are executed at the lowest level.
Save for costly reverse engineering techniques, compiled code is a good as a black box.
It should be noted that the analogy does not extend to training e.g. an artificial neural
network: although in a sense the encoding of knowledge is changed during training,
activating a trained neural network will still work in the same way as activating an
untrained one—just the results are better. But with compilation, the meaning of a routine
remains exactly the same; it can just be executed faster in compiled form.

Very few intelligent agent architectures have the ability to perform skill-preserving
compression of parts of themselves [12]. For example, Soar’s chunking allows fast re-
trieval of a previously successful solution [3], but it does not re-encode the solution if it
turns out to be reliable over time. In fact, to date no architecture known to the authors
is capable of selective self-compilation, except AERA, discussed in section 6.

Let us emphasize again the two ways to better utilize energy and time on a partic-
ular task: (1) find a new sequence of actions that solves the task more efficiently and
effectively (example: find a smoother reaching trajectory to grab a cup) and (2) take a
fixed sequence of actions known to solve the task but perform them more efficiently or
faster (example: run the solution after compilation or on a faster processor). The former
requires knowledge acquisition and can thus be found through curiosity; however, the
latter requires an agent architecture allowing skills to be represented at different levels.
Here “levels” includes both software (e.g., interpreted versus compiled code) and hard-
ware (e.g., run on processors with different clock speeds, store information in memory
with different read and write speeds). It should be noted though that many kinds of actu-
ators, such as servomotors, have a maximum operational speed and cannot work faster

3 An exploratory action may put the agent in a position that conflicts with the position that it
needs to be in to achieve the current goal; i.e., an agent cannot be in two places at the same time.



even when more energy is available. This can impose an upper limit on the speed of
a routine which has to control actuators. Nevertheless, many systems are considerably
slower in selecting actions than it takes to execute them—a classic example is Shakey
the robot, a modern example the Mars rovers—leaving room for progress in efficiency
and effectiveness through re-encoding of skills.

So an advantage can be gained by architectures that support (at least) two levels
of encoding skills. Having this capability, an agent should be motivated to compress
energy and time usage, meaning that it should be motivated to re-encode skills at a
lower level. Some care must be taken here though: as re-encoding itself can be a costly
process, and because it can result in black-box components, it should only be done for
skills which have been shown to be useful and reliable. Here we see that curiosity is
a process that can be in service of the drive to be effective and efficient: curiosity can
drive the exploration of current uncertain knowledge, which can lead to either its falsi-
fication or vindication. Falsified knowledge can be deleted; vindicated knowledge can
be re-encoded at a moment when there is enough time to do so. As always, time must
explicitly be traded off; a principled way of doing so is presented in the next section.

5 An Operational Framework for Resource-Bounded Machines

During their initial stages of learning about the world and their constraints, machines
will inevitably interact with humans—their teachers, supervisors, and users—and will
need to adapt to our patterns. These patterns include time for work, time for supervised4

play, and time for deactivation. An intelligent, resource-bounded machine should utilize
the kinds of activities afforded by these patterns to the fullest extend. Specifically, we
associate a mode of operation with each of these three patterns of activity, namely Work,
Play, and Dream—together the WPD framework:

Work: Every machine has a purpose, so when a user provides it with goals, it will
have to fulfil them. During work, all resources of the machine are focused on exploiting
the current knowledge and skills. Interesting, unexpected events may be recorded in
memory buffers for later analysis (see Dream mode). Any spare processing power may
be used for learning from these events, but no time will be allocated for exploration.

Play: At times when the machine is operational but has no goals left to achieve
or does not know how to achieve the existing ones, it will activate its play drive. The
machine will perform curiosity-driven exploration, constantly challenging itself to do
novel yet learnable things. But as curiosity can “kill the cat,” the machine will have to be
supervised (e.g., a human remains close to a delicate robot’s kill switch), just as small
children should not be left on their own. Even machines operating only in virtual envi-
ronments require supervision, because there are typically many avenues for exploration
that are unrelated to the machine’s ultimate purpose. So ideally, the user is capable of
interrupting and suggesting more constructive tasks (which would temporarily put the
machine in work mode) if she notices the machine exploring such unrelated avenues.

Dream: At times when supervision of the machine is not possible—for example,
when the user goes out for lunch or to bed—the machine will have to be disconnected

4 “Supervised” as in parental safeguarding against danger, not as in classifying labeled data.



in order to prevent possible damage to either itself or the environment. During such
times, the machine becomes a purely computational device without access to the ex-
ternal environment. This time can be put to good use by “dreaming”: flushing buffers
that contain interesting but unprocessed events observed during work or play, by incor-
porating them into the machine’s knowledge and skill representation. This process has
an aspect of real dreaming in that recent events are being re-examined. Furthermore,
other computationally intensive tasks such as compression or self-compilation can be
performed, to decrease memory usage and speed up skills. If there is still more time left
after flushing and compressing—i.e., the machine has not yet been “woken up”—it can
start inventing tasks or goals to pursue during play time on the next “day.”

We emphasize that Work, Play, and Dream should not be considered as different
states, but as different processes which must be scheduled. They may run in parallel,
although we expect that there are typically not enough resources available to Work,
Play, and Dream simultaneously—notably computational resources (focusing on work
at hand does not leave enough power and time to invent novel, intrinsically motivated
tasks and perform compression of knowledge and skills) and situated resources (cannot
perform work-related and exploratory actions at the same time because they conflict
spatially, while there is a deadline to complete work).5 It may turn out that the need to
dream is a necessary side-effect for any system that is constrained in both computational
power (because there are more events/inputs than can be processed without forsaking
other high-priority tasks) and memory (because unprocessed events/inputs can be stored
in buffers but these will fill up over time). Such a system becomes “tired” when its
buffers reach capacity, and needs to “dream” to process the input history backlog.

It can even be argued that the combination of work and play gives rise to creativ-
ity, which is the production of an artifact or action that is both novel/surprising and
useful/valuable [7]. The external reward received through work is a measure of the use-
fulness/value of what the machine produces, while the internal reward received through
play allows for inventing novel solutions. The dream mode supports both work and play
by dealing with realistic resource constraints: both the computational power and storage
capacity of the creative machine are finite, and also the time a supervisor/teacher can
spend per day with the machine is limited. Altogether, the WPD framework provides
the necessary and sufficient ingredients for “raising” creative machines.

6 AERA: An Explicitly Resource-bounded Architecture

AERA is an architecture for AGI systems that has been developed in the European
HUMANOBS project, with the aim of learning socio-communicative skills by observing
people. The name stands for Auto-catalytic Endogenous Reflective Architecture, which,
in a nutshell, refers to the fact that the system is both operationally and semantically
closed, as discussed in more detail elsewhere [6].

A functional prototype has been developed as a proof of concept of the architecture,
and the preliminary results (yet unpublished) strongly indicate that the architecture is
sound and that our approach towards the engineering of autonomous systems is tractable

5 Copying an agent’s software to outsource Play and Dream to a separate computer raises huge
issues with synchronization—and eventually also ethics.



and promising. But implementation and testing details are outside the scope of this
paper—here we describe a few features of AERA relevant to the present discussion
of resource-bounded machines, showing how the concepts of curiosity, efficiency, and
effectiveness can be mapped onto and operationalized in an actual AGI system.

6.1 Principles of AERA

In the main, AERA is designed to reason and achieve goals in dynamic open-ended
environments with insufficient knowledge and limited resources—in that we adopt the
working definition of intelligence proposed by Wang [14]. Knowledge is understood
to be operationally constructive: it is executable code, which implements the system’s
ability to act in the application domain. AERA is model-based and model-driven, mean-
ing that its architecture is unified and consists essentially of dynamic hierarchies of
models that capture knowledge in an executable form. From this perspective, learn-
ing translates into building models, integrating them into the existing hierarchies, and
revising them continuously. In this way the system controls the expansion and re-
programming of its own code, to keep itself adapted to the environment.

Whereas learning is based on model building, this in turn is driven by goals and
predictions, i.e., the evaluation by the system of the observed phenomenology of the
domain. In other words, the system infers what it shall do (specification) and observes
ways to reach these goals (implementation). Learned specifications and implementa-
tions are highly context-dependent, which raises the challenge of identifying when to
reuse (or refrain from reusing) learned models. Specifications and implementations are
built hierarchically, which means that the system can reuse previously learned skills.

6.2 Executable Models to Represent Knowledge and Skills

The simplified view of a model is as an implication A → B. A model is a bidirectional
program, where both sides can match data: (1) if an A is observed in the input stream, a
prediction that B will be observed is generated; and (2) if the system has a B as a goal,
an A will be generated as subgoal. Simulations can be made using forward chaining,
and planning can be done using backward chaining. A combination of planning and
simulation is performed to check for potential conflicts before committing to a goal.

This is a greatly simplified view though; A and B are actually patterns that can
contain variables and guards. Constraints between the variables in A and B and their
relative times of occurrence can be defined. Models are also arranged in hierarchies,
meaning that A and/or B can be a reference to another model, such that models can
specify contexts and requirements for other models, which are appropriately taken into
account during chaining. At the bottom of the hierarchy, A can refer to an actuator
command. Predictions generated by models are tracked and used to update the confi-
dence values associated with each model. New models are constructed automatically
(i.e., learned) in response to prediction failures and unpredicted goal achievements and
state changes. Poorly performing models are temporarily disabled (if there is merely a
context change) or deleted (if not functioning well in any context).



Originally conceived for scalability reasons, AERA runs a process that tries to iden-
tify and compile chains of models that are useful and reliable.6 Note that due to reg-
ularities in the real world, certain subgoals need to be achieved often, using similar
plans, which are represented by backward chained models. Similarly, certain inputs
are observed often, leading to similar predictions of next events, which are represented
by forward chains of models. Now, the computation performed by a chain of models
(forward or backward) can be represented in (C++) code, which can be generated, com-
piled, and linked back as a black-box DLL to AERA’s executable (also implemented in
C++) on the fly. The old, white-box models can then be swapped to disk, where they
can be retrieved if decompilation is ever needed, e.g., when the compiled “supermodel”
starts misbehaving and needs refinement. Thus, besides learning knowledge and skills,
AERA is capable of re-encoding them in the sense of section 4.2.

6.3 Driven to Self-Compilation

Let us consider three resources under the control of an AERA-based machine: real-time
(external clock), working memory space (RAM), and storage space (HDD). The latter
two are instances of the energy resource, but here it makes sense to separate them. Let us
furthermore assume that real-time is more precious than working memory space, which
in turn is more precious than storage space. (Note the following relations: decreasing
the amount of information held in working memory typically speeds up the processing
of what remains in working memory—this just reinforces the ordering of preciousness.)

Consider AERA’s self-compilation capability: it decreases both real-time and work-
ing memory usage, while increasing storage space usage (by swapping the uncompiled
models to disk). When weighed by preciousness, self-compilation leads to better re-
source utilization, notably making the system more effective. Thus an AERA-based
machine must be motivated to adopt goals that lead to paths of actions that eventually
lead to self-compilation. Such goals can be found through a simple analysis of control
values already present in models, such as the derivative of their confidence values—a
high absolute derivative indicates an unstable model that can be vindicated or falsified
by empirical testing, which can for example be done by adopting the left-hand side of
such a model as a goal. Such testing then amounts to intrinsically motivated exploration.

But the crux is that actually finding a way of scheduling the mentioned processes is
a challenge in itself for a resource-bounded machine: iterating over models to find can-
didates for experimentation and compilation takes time, and so does planning and simu-
lating to see which candidates can be pursued without conflicts—in time, space, and re-
sulting state—with extrinsic goals and constraints. Here the presented WPD framework
offers a principled way of scheduling extrinsic goal achievement (a Work activity), in-
trinsic goal generation (Dream), experimentation (Play), and self-compilation (Dream).

7 Discussion and Conclusion

We built AERA as a cognitive architecture towards AGI, based on many firm principles
[12]. However, curiosity was not one of them. Now it turns out that AERA is missing

6 How exactly usefulness and reliability are determined is out of scope here.



an exploration heuristic, but that all ingredients are present for implementing Schmid-
huber’s mathematically sound and biologically plausible definition of curiosity. In fact,
generating goals that are expected to activate the existing self-compilation mechanism
leads to both forms of input compression identified in section 4: more accurate knowl-
edge, and the re-encoding thereof. We expect this to lead to both faster learning and
faster achieving of goals.

We have not twisted AERA to fit the theory of curiosity, nor twisted curiosity to
fit AERA. Instead we have searched for a principled middle ground—which we have
found in the concept of resource usage compression. Finding this middle ground ben-
efits both AERA and the Formal Theory of Curiosity: it benefits AERA because we
strive to base it on solid principles, not to hack a few ideas together; it benefits curios-
ity because it makes us consider real-world applications and the issues that they bring,
which provides an opportunity to refine the theory. Here we have generalized the idea
behind the Formal Theory of Curiosity to also take into account other resources, notably
energy and time (cf. [8, 11] for preliminary steps in this direction), paving the way for
the construction of machines that are driven to become more efficient and effective.

References

1. Helgason, H., Nivel, E., Thórisson, K.R.: On attention mechanisms for AGI architectures: A
design proposal. In: Proc. of The Fifth Conference on Artificial General Intelligence (2012)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic
Probability. Springer, Berlin (2004), (On J. Schmidhuber’s SNF grant 20-61847)

3. Laird, J.E.: Extending the soar cognitive architecture. In: Proceedings of the First Conference
on Artificial General Intelligence. Springer, Memphis, Tennessee (2008)

4. Legg, S., Hutter, M.: A collection of definitions of intelligence. In: Proceedings of the First
Annual Artificial General Intelligence Workshop (2006)

5. Legg, S., Hutter, M.: A formal measure of machine intelligence. In: Proceedings of the An-
nual Machine Learning Conference of Belgium and The Netherlands (Benelearn) (2006)

6. Nivel, E., Thórisson, K.R.: Self-programming: Operationalizing autonomy. In: Proceedings
of the Second Conference on Artificial General Intelligence (2009)

7. Runco, M.A., Jaeger, G.J.: The standard definition of creativity. Creativity Research Journal
24, 92–96 (2012)

8. Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and
the fine arts. Connection Science 18(2), 173–187 (2006)

9. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990-2010). IEEE
Transactions on Autonomous Mental Development 2(3), 230–247 (2010)

10. Schmidhuber, J.: POWERPLAY: Training an Increasingly General Problem Solver by Con-
tinually Searching for the Simplest Still Unsolvable Problem. Tech. Rep. arXiv:1112.5309v1
[cs.AI], IDSIA (2011)

11. Srivastava, R.K., Steunebrink, B.R., Schmidhuber, J.: First experiments with PowerPlay.
Neural Networks (2013)

12. Thórisson, K.R., Helgasson, H.P.: Cognitive architectures and autonomy: A comparative re-
view. Journal of Artificial General Intelligence 3(2) (2012)

13. Wang, P.: On the working definition of intelligence. Tech. rep. (1995)
14. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer (2006)
15. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3/4), 279–292 (1992)


