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Abstract. Evaluation of artificial intelligence (AI) systems is a prereq-
uisite for comparing them on the many dimensions they are intended
to perform on. Design of task-environments for this purpose is often
ad-hoc, focusing on some limited aspects of the systems under evalua-
tion. Testing on a wide range of tasks and environments would better
facilitate comparisons and understanding of a system’s performance, but
this requires that manipulation of relevant dimensions cause predictable
changes in the structure, behavior, and nature of the task-environments.
What is needed is a framework that enables easy composition, decompo-
sition, scaling, and configuration of task-environments. Such a framework
would not only facilitate evaluation of the performance of current and
future Al systems, but go beyond it by allowing evaluation of knowledge
acquisition, cognitive growth, lifelong learning, and transfer learning. In
this paper we list requirements that we think such a framework should
meet to facilitate the evaluation of intelligence, and present preliminary
ideas on how this could be realized.
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1 Introduction

A key challenge in the development of artificial intelligence (AI) systems is how
to evaluate them. Valid measurements are necessary to assess progress, com-
pare systems and approaches, and understand their strengths and weaknesses.
Most evaluation methods in use today yield only a single performance score
that brings little qualitative insight, and is incomparable to performance on
other tasks. Furthermore, few if any proposals exist for evaluating fundamental
aspects of intelligence like learning capacity, transfer learning, deterioration of
learned skills, as well as cognitive development and growth.

Evaluation of Al systems is traditionally done by measuring their perfor-
mance on one or more tasks instantiated in an environment. A task is the trans-
formation of a world state into a goal state, or the maintenance of a goal state
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in light of perturbations. Tasks may be compound, have one or more explicit
goals, sub-tasks, constraints, and call for continuous or intermittent action. A
task is performed by an agent whose atomic actions can in principle perform it.
An environment is the instantiation of the task and its context, and may include
some form of body for the agent, as well as distractors/noise, that complicate
the task but are not strictly a part of it. We use the term task-environment to
refer to the tuple task+environment.

Most task-environments cannot easily be classified — let alone freely modi-
fied — along a large number of dimensions, making it difficult to systematically
assess an Al system’s strengths and weaknesses. This rigidity limits any chosen
metrics to a small subset of systems, and complicates their comparison. Tasks
such as pole-balancing or video game playing, for instance, are not sufficient for
evaluating systems that can operate on a diverse set of data or under multiple
high-level goals, but may be fine for certain single-goal learners.

At the other end of the spectrum, task-environments for evaluating human-
level intelligence — e.g. the Turing test [22] — cannot be compared easily to those
appropriate for simpler learners. Human “intelligence quotient” measures, de-
veloped by psychologists, use a set of tasks normalized by their distribution in
a social group and are highly species- and society-specific — and thus not a good
match for intelligent machines. Another problem with most measures proposed
for higher intelligences is that they assess only single point in time [18]. As-
sessing a system’s learning capacity, however, requires time-based measures in
task-environments with adjustable complexity. A framework supporting incre-
mental and predictable changes to compound task-environments, on appropriate
features, could measure a system’s learning rate. This would enable evaluation
of lifelong learners and transfer learning capacity: the transference of acquired
knowledge to new domains/tasks. Assessing these important aspects of intelli-
gence calls for multiple similar task-environments that can easily be compared.

Another aspect of truly intelligent systems is capacity for cognitive develop-
ment — the ability to improve the very cognitive apparatus enabling the learning.
This ability can itself benefit greatly from a gradual increase in complexity and
other tutoring techniques that could enhance task-environments [4]. Measur-
ing cognitive growth (and meta-cognition) capacity might be enabled through
mechanisms similar to those used for evaluating transfer learning.

Since general intelligence enables systems to (learn to) perform a wide range
of tasks that they have not seen or been prepared for, it cannot be assessed in
only a single task or environment. Evaluating lifelong learning — systems that
continually adapt and learn new things — calls for either a wide range of task-
environments, or a single (large and complex) dynamically changing multi-task
environment. In both cases one would like to automatically generate such task-
environments, given a high-level specification for certain features and constraints.

Although many AT evaluation frameworks exist [13], none address all of the
above concerns. In Sect. 3 we attempt to collect in one place the full set of
requirements that such a comprehensive framework should address, and present
some preliminary ideas on how this could be realized in Sect. 4.
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2 Related Work

In a comprehensive and recent survey, Herndndez-Orallo argued that the assess-
ment of general “real” intelligence — as opposed to specialized performance —
should be oriented towards the testing a range of cognitive abilities that enable
a system to perform in a range of tasks [11]. One way to accomplish this is
to procedurally generate task-environments that require a suite of abilities, and
appropriately sample and weight them. Hernandez-Orallo takes this approach,
but focuses on discrete and deterministic task-environments [12,10]. Legg &
Veness’s Algorithmic IQ approach posits a similar framework for measuring uni-
versal Al with respect to some reference machine which interprets a description
language to run the environment [14]. The choice of this description language
remains a major issue and deeply affects the kinds of environments that are
more likely to be generated. The BF programming language used in their work
closely resembles the operations of a Turing machine, but cannot easily gener-
ate complex structured environments and is opaque to analysis. A wide range
of description languages has been proposed for coordination and planning tasks
(e.g. TEMS [7] and PDDL [17]), but tend to focus on static, observable domains
and specify things in terms of agent actions and task hierarchies which can then
drive the development of Al systems specialized to the specified task.

Games have long been considered a possible testbed for the evaluation of
intelligence [20]. In the General Game Playing competition, Al systems play pre-
viously unseen games after being provided with the rules in the very analyzable
Game Description Language, but the games must be finite and synchronous [16].
More recently, there has been a lot of interest in the automatic play of Atari-era
video games. An extensible, user friendly description language for such games
has been proposed that relies heavily on opaque built-in functions and should
in the future be amenable to procedural generation [8,19]. Much work has been
done on procedural generation in specific video games, but more general work is
still in its infancy [21]. Lim & Harrell were able to automatically generate vari-
ants for video games written using the PuzzleScript description language, but
the simulation-based approach they used for the evaluation of candidate rulesets
is not feasible for very difficult games since it requires an agent that is intelligent
enough to perform the task [15].

Some research has tried to relate problem structure to heuristic search algo-
rithm performance, including efforts to use a wide variety of problem types to
increase the generality of algorithms [2,5]. Some of this work, notably that on
hyperheuristics [6], has focused on algorithms that try to learn general search
strategiesand don’t only perform well on a few specific problem types. Under-
standing the impact of problem characteristics on learning has been key in these
efforts, but so far only search and optimization domains have been addressed.

Similar work has been done in the field of generating random Markov Deci-
sion Problems (MDPs) [1, 3], focusing on a rather limited domain of potential
task-environments. Our own Merlin tool [9] supports various methods for the
procedural generation of discrete and continuous multi-objective MDPs, but does
not adequately address the full set of requirements below.
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3 Requirements for Intelligence Evaluation Frameworks

The goals of evaluating Al systems are to measure research progress, compare
systems and approaches, and understand their strengths and weaknesses. We
wish to achieve this for a wide range of Al systems, from very simple to very
complex, where the systems may be built with different background assumptions.
The framework we envision must support evaluation of intelligence on a number
of aspects such as skill, knowledge, transfer learning, cognitive development and
growth, lifelong learning and generality. All combined this calls for multiple task-
environments, selected for appropriate amounts of similarity and complexity.
Note that here we are not attempting to propose particular benchmarks: we
are interested in identifying requirements for a framework that can be used to
construct benchmarks for the above cognitive skills.

We have identified the following high-level properties that we consider im-
portant for a flexible task-environment framework as described above:

(A) Offering easy construction of task-environments, and variants with a
wide range of features and complexity dimensions. This would include the
ability to (a) compose and decompose desired task-environments and
parts thereof, and (b) to scale and tune them, in part and in whole, along
various parameters and properties, with predictable effects, especially for
increasing and decreasing their complexity along known dimensions.

(B) Ability to specify, at any level of detail, the procedural generation of task-
environments with specific features, constraints, etc., and how they should
(automatically) grow, possibly depending on the progress of the system un-
der evaluation.

(C) Facilitation of analysis in terms of parameters of interest, including task
complexity, similarity, observability, controllability, etc.

Analysis of various non-explicit features of such task-environments could fa-
cilitate an understanding of their function in evaluating various systems, and
thus help with their automatic generation, robustification, and standardiza-
tion. Decomposition can tell us about a task-environment’s structure and help
find commonly used building blocks. Composition allows for the construction of
(much) larger structured task-environments. Scaling helps with the assessment
of progress and growth, and tunability can facilitate the systematic assessment
of a system’s strengths and weaknesses. These can all result in variants that are
similar but different in specified ways, which allows transfer learning. Finally,
automatic generation can provide us with a virtually unlimited supply of fresh
task environments with which to test cognitive abilities and general intelligence.

The framework should support the gradual construction and tunability of
task-environments with the following properties:

1. Determinism: Both full determinism and partial stochasticity (for realism
regarding, e.g. noise, stochastic events, etc.) must be supported.

2. Ergodicity: The reachability of (aspects of) states from others determines
the degree to which the agent can undo things and get second chances.
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. Controllable Continuity: For the framework to be relevant to e.g. robotics,

it is critical to allow continuous variables, to appropriately represent continu-
ous spatial and temporal features. The degree to which continuity is approx-
imated (discretization granularity) should be changeable for any variable.

. Asynchronicity: Any action in the task-environment, including sensors and

controls, may operate on arbitrary time scales and interact at any time,
letting an agent respond when it can.

. Dynamism: A static task-environment’s state only changes in response to

the AT’s actions. The most simplistic ones are step-lock, where the agent
makes one move and the environment responds with another (e.g. board
games). More complex environments can be dynamic to various degrees in
terms of speed and magnitude, and may be caused by interactions between
environmental factors, or simply due to the passage of time.

. Observability: Task-environments can be partially observable to varying

degrees, depending on the type, range, refresh rate, and precision of available
sensors, affecting the difficulty and general nature of the task-environment.

. Controllability: The control that the agent can exercise over the environ-

ment to achieve its goals can be partial or full, depending on the capability,
type, range, inherent latency, and precision of available actuators.

. Multiple Parallel Causal Chains: Any generally intelligent system in

a complex environment is likely to be trying to meet multiple objectives,
that can be co-dependent in various ways through any number of causal
chains in the task-environment. Actions, observations, and tasks may occur
sequentially or in parallel (at the same time). Needed to implement real-
world clock environments.

. Number of Agents: It should be possible to add any number of (intelligent)

agents to the task-environment without specifying their behavior explicitly.
This would allow for the testing of the Al in isolation, in social situations, or
with a teacher [4], and the evaluation of systems of systems (e.g. simulators).
Other agents can greatly affect the difficulty of any task-environment.
Periodicity: Many structures and events in nature are repetitive to some
extent, and therefore contain a (learnable) periodic cycle — e.g. the day-night
cycle or blocks of identical houses.

Repeatability: Both fully deterministic and partially stochastic environ-
ments must be fully repeatable, for traceable transparency.

Flexible Task-Environment Framework: A Proposal

To meet the stated requirements we propose a description language for task-
environments containing a low number of small atomic building elements (the
base operators); few atomic units — as opposed to multiple types — means greater
transparency since superstructures can be inspected more easily than larger black
boxes can, facilitating comparison between task-environments. This also lays the
foundation for smooth, incremental increase in complexity, as each addition or
change can be as small as the smallest blocks. Sect. 4.1 gives an example of what
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this might look like. On top of this methods for modification (Sect. 4.2), analysis
(Sect. 4.3), construction (Sect. 4.4), and execution can be developed.

4.1 Example Syntax and Task

Fig. 1a shows a description of an extremely simple task where the agent must
reach a goal position in a 2-dimensional space. We describe a task-environment
by a set of (time-) dependent variables with causal relations. The Initialization
section provides the initial values for the variables. In our case these are goal
and agent position. The Dynamics section defines how variables change over
time by allowing us to refer to the past variable values using time arguments
and the reserved variables t (for the current time) and dt for the size of the
(arbitrarily) smallest atomic time step. Unlike other languages in Sect. 2 we
allow the specification of arbitrary expressions.

Initialization:

1. reward 7 .
2. gx = 3 // goal x = if | reward
3. gy =3 // goal y () sensation
4. ax = 4 // agent x —
5. ay = 10 // agent y O control
6. Dynamics: O hidden
7. dx(t) = 0 // step x —> dataflow
8. dy(t) = 0 // step y
9.  ax(t) = ax(t-dt) + dx(t) — delayed flow
10. ay(t) = ay(t-dt) + dy(t)
11. at (t) = ax(t) == gx(t) &&

ay(t) == gy(t)
12. reward(t) = 10 if at(t) else -1
13. Terminals:
14. reward(t) > O P J \ LY
15. Rewards: ey == L y 9% Wy =Y 5 y ¥
16. reward (t) - - - -
17 . Observations:
18.  ax(t), ay(t), gx(t), gy(t)
19. Controls: oy o
20. dx(t) = [-1, 0, 1] oy = Wy 4
21.  dy(t) = [-1, 0, 1] e el

(a) (b)

Fig. 1: Example description (a) and extracted graph (b) for a task where the
agent must reach a goal location, including causal connections with latency.

Lines 7 and 8 in the example set dx and dy to 0 by default. However, these
variables can be controlled by the AI, as we can see on lines 20 and 21. Line 9
says that the value of ax at the current time t is equal to the previous value of ax
plus the current value of dx. Line 12 uses conditional statements and refers only
to variables in the current time step. The arithmetic and comparison operations
make up the (extensible) set of base operators which are not further defined.

While the Initialization and Dynamics sections mostly describe the environ-
ment, the Terminals and Rewards sections can be said to describe the task in
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terms of environment variables. They consist of zero or more lines which each
specify an expression that evaluates to a terminal (Boolean) that ends the task
or a reward (a number). Like everything else, rewards can depend on time and
other variables, which allows tasks to have e.g. time pressure, deadlines, start
times, and complex preconditions and interactions — perhaps even modulating
other dependencies such as time.

Finally, the sections for Observations and Controls describe how the agent in-
teracts with the environment. Observations consist of a set of sensations that oc-
cur simultaneously and are described on their own line with a comma-separated
list of expressions. Controls are described as assignments of a collection of accept-
able values to environment variables whose value is overwritten when specified.
Non-deterministic responses of an agent’s body can be modeled by making the
causal connections following the controls more complex.

4.2 Example Tuning

The task-environment as described is fairly simple, being discrete, fully observ-
able, deterministic, and static. To make the space continuous, we can add a
controllable angle. We add angle = 0 to the Initialization section, replace ex-
isting controls with angle(t) = [-pi..pi], and modify the Dynamics section
like so:

7. dx(t) = dt * cos(angle(t)) 8. dy(t) = dt * sin(angle(t))

11. reward(t) = 10 if (ax(t)-gx(t))~2 + (ay(t)-gy(t))~2 < 1 else -1
Making the space continuous in this way requires relatively significant changes.
It is much easier to go from this continuous representation to one that appears
discrete to the agent by discretizing controls and sensations (e.g. by rounding to
the nearest integer). In the new lines 7 and 8 we have started making the envi-
ronment (more) continuous in time as well. dt would ideally be infinitesimal
for continuous environments, but a small value will have to suffice in practice.

To make the task more dynamic and periodic we can have the goal move
a little. We replace the initialization of gx with gx(t) = 4+3xsin(t) and move
it to the Dynamics section. The environment can easily be made stochastic by
the use of random number generators that are provided as base operations.

We can further decrease observability by adding delays into the causal
chain and changing refresh rates. For example, to let observations of ax and ay
occur with a delay of one time step and allow observation of the goal position
only at time steps 1, 3, 5, ...:

17. ax(t-dt), ay(t-dt) 18. gx, gy @ [1:2:]

In similar ways we can affect controllability by introducing delays or letting
controls block each other for a period of time, for example, when they share
actuators which may then be busy for some time.

4.3 Analysis

Analysis of task-environments can help measure their similarity, which is highly
useful for evaluating learning capacity and transfer learning, and elucidate fea-
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tures such as complexity, observability and difficulty that may shed light on
the “why” behind the performance of various systems. For structural analysis a
graph representation may be useful (see Fig. 1b). The edges show (possibly de-
layed) data flow; and nodes represent base operations and can be annotated with
their role: reward, sensation, control, or hidden. Our description language makes
important features like spatial and temporal resolution, delays, and blocking con-
trols, readily apparent and easy to tune. The relative positions of observation,
reward, and control nodes says a lot about difficulty, observability, and controlla-
bility of a particular task-environment. For instance, a task may be easier when
these are grouped closely together; sensations and controls might be distractors
if they are off the critical path to a reward or goal state.

The defining high-level characteristics of task-environments have yet to be
identified, but will most likely include features like complexity, difficulty, ob-
servability, controllability and dimensionality. Graph algorithms such as com-
pression, similarity detection and frequent subgraph mining can be leveraged to
help determine these. A butterfly effect — where small changes in code have a
large effect — may complicate purely structural analysis of some features. Tracing
the construction from a small known task-environment through known transfor-
mations and compositions is likely to help.

4.4 Construction: Addressing the Range From Q-Learning to AGI

The easiest way to construct a new task-environment is to make variants of
existing ones by changing initial conditions and other constants, which in our case
include important concepts like resolution, delays, observability, and constraints
on controls and sensors. One can also start from approximations of known tasks,
although we find more important the easy construction of a variety of task-
environments whose properties can be easily compared on key dimensions.

A natural way for scaling task-environments up or down is to modify the
range of variables (e.g. board size in a game, or ax to gx distance in our example)
or by changing the dimensionality. In most simple tasks, such as pole balancing,
only a handful of variables need to be observed at a sufficient update frequency,
and only a few need to be controlled. More complex tasks for the evaluation of
more capable systems can be constructed in a number of ways. Tasks appropriate
for human-level intelligence often have a high number of (possibly irrelevant)
observable variables, and hidden variables whose state can only be inferred by
observing a different set of partially and/or conditionally correlated variables.
Our formalism facilitates this through easy definition of dependencies between
variables, and their (un)observability. Similarly, tasks can be made harder by
introducing latencies between causal connections. Much of the tuning in Sect. 3
and 4.2 can be done automatically using such techniques.

Manipulation of rewards is another obvious way to make tasks more chal-
lenging, for instance moving them further away from controls (making the causal
chains longer). Adding time-dependent functions, e.g. by replacing a constant,
is a natural way to increase complexity through tunable levels of dynamism.
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Truly large and complex multi-goal tasks can be created in many ways by com-
posing tasks together, requiring the AI to solve them sequentially or in parallel,
especially if they share sensors and controls. This could e.g. be achieved by du-
plicating a single task and changing the initial state of one, and/or the ranges
of some variables. Variables in one task may be made co-dependent on values of
(different or same) variables in the other. There is no limit to how often this pro-
cess could be repeated, with different or duplicated tasks, low-level or high-level,
to create large, structured and complex task-environments.

So far we have created tasks of comparable logical complexity to Pac-Man and
Pong, as well as mazes of arbitrary complexity. Their graph representations can
easily be modified in various ways, creating increasingly complex, dynamically
varying composite tasks, where sequential and temporal dependencies can be
freely introduced. Comparing and modifying them is much easier than if using
completely hand-crafted tasks with no underlying common base.

5 Conclusions & Future Work

We have identified requirements that a framework ideally must meet to allow
flexible construction of task-environments for evaluating artificial learners and
AT systems, and proposed a preliminary formalism to meet these requirements.
In our proposed approach, defining simple tasks requires a few lines of code;
scaling is straightforward. In future work we plan on completing a first version
of our task-environment description language and start on the development of
methods for the automatic construction, analysis, and execution of evaluating
AT systems, which is important for addressing the full range of requirements
identified.
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