
IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 1	

Abstract
From its early beginnings artificial intelligence (AI)
targeted the ambitious goal of creating machines
with high levels of autonomy and intelligence. A
major determinant of scientific and engineering
progress is the methodology employed. Instead of
being specifically designed for this goal, the main
methodologies employed so far in AI have closely
followed those of general software development:
Algorithms are developed for particular (pre-
defined) tasks in particular (pre-defined) conditions.
At the center are programming languages designed
for humans to construct software architectures by
hand, who implements systems line by line, like a
construction worker laying down bricks. This
constructionist approach has produced a diverse set
of isolated AI solutions to relatively small problems,
the generally intelligent machine still being a distant
dream. We argue that going beyond current systems
and realize AI’s original and ambitious goal requires
a different kind of approach, one that specifically
takes account of the nature of the system to be built.
Here we look at arguments for this claim, identify
some features of general intelligence likely to
dictate features of such a methdology, and discuss
what an appropriate methodology may look like.

1 Introduction
Methodology and research tools are a key determinant of the
rate of scientific progress: The microscope impacted
significantly the rate of progress in the study of the
microscopic; gene sequencing equipment radically sped up
the rate of progress in the investigation of genomes, and the
spatio-temporal resolution of fMRI equipment has had a
profound effect on rate of progress in brain research, to take

1 After Deep Blue defeated Gary Kasparov in 1997 the the

developers of the technology at IBM struggled for years trying to
adapt the technology and knowledge gained on the project to other

some examples. Over the course of history these were not
singular events, never to be seen again: Improvements in
methodology regularly transform research and progress in all
fields of scientific endeavor. Methodology, with its concrete
and conceptual tools, is no less important for progress in AI
than in other fields of science and engineering. If we want to
build a system with general intelligence—a property of
cognition directly related to a system’s propensity for
autonomy—it behooves us to choose our methodology
carefully. Considerations of methodologies in turn requires
us to take a close look at our background assumptions of the
phenomenon we want to re-create artificially.

If the history of AI methodology teaches us anything,
surely one thing must be that hanging our hat on a single task
as the candidate for elucidating the central principles of
general intelligence is a terrible idea. We are talking about
e.g. the hypothesis, central in the early days of AI and still
prevalent to day in various guises, that any machine capable
of beating a world champion in chess would necessarily
possess general intelligence. It wasn’t just partly wrong, or
somewhat off target: It could in fact not have been more
wrong.1 Granted, when the hypothesis was fielded
researchers did not have the 50 years of history we now have
for telling them otherwise. A bit of skepticism, built on this
fact – and the limited progress towards general AI in the past
60 years – seems a healthy approach to take today.

To be autonomous means to be independent from outside
forces and influences. Self-adaptation is the process of a
system to change its own operation, behavior, or structure, to
better achieve its own goals in a particular environment. Here
we assume that an agent’s drives (top-level goals) are
provided from the outside, just like evolution has imbued
living entities with survival and reproduction drives, by a
designer that ensures that her artifacts serve the purpose they
were created for. In highly autonomous systems very little

tasks, projects, systems, and fields—to virtually no avail [Stork
1998].

Machines with Autonomy & General Intelligence:
Which Methodology?

Kristinn R. Thórisson

School of Computer Science, Reykjavik University
Icelandic Institute for Intelligent Machines

Iceland
thorisson@gmail.com

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 2	

other knowledge is needed—just a small “seed” to bootstrap
the system’s knowledge acquisition, also called “learning”.2

A general learner with self-adaptation capabilities will be
more autonomous the more diverse tasks it can learn, the
more skills it can bring to bear on a task at any single point
in time, and the more diverse environments and it can handle.
Its generality may also be determined by how quickly it can
learn and adapt to changes of various sizes and kinds, and the
diversity of novel and unforeseen tasks and environments it
can handle. A third way in which generality can be measured
is by a system’s ability to handle underspecification of task
and environment.

FIG. 1. A: Simple machine learners (L0) take a small set of
inputs (x, y, z) and make a choice between a set of possible
outputs (α, β), as specified by a system’s designer. B: More
complex learners (L1, … L4) handle a number of tasks (tsk1,
… tskn) in many environments (e1, … en). See text for details.

Current state-of-the-art learners come with severe
limitations compared to the kind of learning found in nature
(FIG. 1, L0). For instance, increasing the set of inputs, or
increasing the number of required outputs, will either break a
learning algorithms or slow learning down to impractical
levels. When taught something different from what they
already know, they will take equally long (or longer!) to learn
the new thing (because they cannot bring prior experience to
bear on a new task), and will in fact forget everything they
knew before.

In reference to FIG. 1, let task tski refer to relatively non-
trivial tasks, e.g. assembling furniture and moving office
items from one room to another, simple learner L0 is limited
to only a fraction of the various things that must be learned to
achieve such a task. Being able to handle a single such task
in a specific type of situation (S1) with features that were
unknown prior to the system’s deployment, L1 is already
more capable than most if not all automatic learning systems
available today. L2, L3 and L4 take successive steps up the
complexity ladder beyond that, being able to learn numerous
complex tasks (L2), in various situations (L3), and in a wider
range of environments and mission spaces (L4). Only towards
the higher end of this ladder can we hope to approach truly

2 We could also use other measures, e.g. the level of
dependency of a developing system on particular environmental

general intelligence—systems capable of learning to
effectively and efficiently perform multiple a-priori
unfamiliar tasks, in multiple a-priori unfamiliar situations, in
multiple a-priori unfamiliar environments, on their own.

While artificial learning machines have existed for
decades, their methodological and theoretical foundations
still limit them to a handful of input and output parameters,
typically on what we would in general parlance call a single
pre-defined task in a well-defined, unchanging environment.
Current machine learning algorithms are also a prime
demonstration of what is called negative transfer of
training—and close to a worst-case incarnation of that kind.

Researchers targeting generality must not only overcome
this fundamental limitation of modern machine learning, they
must go beyond it and address learning of many tasks, by
systems situated in information-rich environments, in which
simultaneous and continuous acquisition of relevant
knowledge, and contemporaneous knowledge of multiple
skills which can be transferred to new tasks, may be the
primary or even only option for successful adaptation. To
advance the state of the art on autonomy and generality we
should ask “What kinds of control mechanisms can support
that kind of adaptation across multiple novel tasks, situations,
and domains, autonomously?” This is of course a central
question in the field of AI, and clearly one that will not be
answered in a short paper. The immediate follow-on
question, and the central topic of this paper, is:

What kinds of methodologies can help us develop
such systems?

We will look at this question from four different but related
perspectives, all leading to a similar conclusion: Present AI
methodologies, all of which we argue can be categorized as
constructionist methods [Thórisson 2012], fall short of being
a sufficient and necessary framework for addressing the
requirements relevant to creating machines with high levels
of general intelligence and autonomy.

The rest of the paper is organized as follows: After
analyzing the limitations of constructionist methodologies
(section 2) we look at the operational characteristics of
adaptive systems that may be important for the task at hand
(section 3), followed by dissecting how constraints on the
system we seek to build put requirements on the methodology
(section 4). In section 5 we look at two defining properties of
higher natural intelligences: introspection, or reflection, and
cognitive growth. Lastly (section 6) we pull together some
main themes from the preceding sections, and finish (section
7) by drawing conclusions and discussing future work.

2 Which Methodology: Limitations of the
Constructionist Approach

Artificial intelligence researchers use methodologies that are
fundamentally the same as those used in computer science
and software engineering in general—the same programming
tools, same hardware, same operating systems, same

circumstances for its bootstraping or survival; while important, this
issue is out of the scope of this paper.

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 3	

“algorithmic thinking”, and the same software development
techniques. Just like in any other software development
efforts, the approach puts the AI researcher in the role of a
“construction worker”, building systems by hand. Virtually
all available methodologies for AI are of this constructionist
kind—the system programmer laying down each instruction
like a construction worker lays down the brick to a house.

2.1 Constructionist Approaches in a Nutshell
Constructionist approaches lead system development along
the path familiar to all software developers: A task and its
execution environment is identified and dissected (by
humans), solutions are proposed (by humans), subsequently
algorithms are developed (by humans), and the resulting
system behavior evaluated (by humans)—all by hand.3

Building a vacuum-cleaning robot,4 for instance, will
proceed by a system designer (a) identifying all relevant
aspects of target rooms and floors, (b) anticipating the
variability to be expected in these with future customers, and
(c) defining all major and minor aspects of the system's
operations to achieve its vacuum-cleaning task, acceptably
accurately and reliably. However implemented, the system
receives pre-defined high-level pragmatic rules – heuristics –
to decide how to achieve what typically is a single operational
goal, designed and written by humans, and a relatively
detailed specification of its operating environment from its
designers is “baked into” its design. The interaction between
the rules may be complex, even unforeseeable, and thus the
ultimate behavior of the system may be difficult or
impossible to predict in detail, at least without running the
system in some set of scenarios intended to evaluate its actual
behavior under various conditions.

These systems are typically not written to come up with
their own methods for achieving their goals. Likewise, they
are incapable of coming up with their own (sub-)goals.
Nevertheless, making these systems more autonomous would
requires precisely such capabilities. Such systems match the
old cliché very nicely: They only do what the programmer
programmed them to do.

We can of course augment such hand-crafted systems
with modern machine-learning techniques, and this will
typically proceed by the designer identifying which
parameters shall be handled by machine learning algorithms
(cf. FIG. 1). The input and ouptut variables of the leaner will
be hand-picked by the designer, and the training will be
directed by hand by the designer. All in all, while some
limited aspects of the system may now have been
automatically programmed, the addition of machine learning
will not fundamentally change the methdology otlined above:
All system goals and subgoals are identified and specified by
the designers and baked into the design, and the correctness
of the system’s behavior will be verified by the system’s
designers. The overall system design still follows a
constructionist methodology.

3 Granted, several tools may be used, but these generally don’t

go beyond what may justifiably be called “semi-automatic hand-
operated tools”.

2.2 Some Limitations of Current Systems
To see if this methodology is suited for the kinds of systems
we target – with increased levels of intelligence – we must
look at what kinds of processes are missing. One such activity
is the ability of the system to not only to be able classify its
inputs, but rather the more general ability of being able to
learn to classify them, in light of its top-level goals (drives).

To take some examples, a thermostat’s method for
achieving its task is selected by the designer, and
operationalized explicitly in its design. The input variable
(temperature) is hand-selected, and its range (maximum,
minimum meaningful value) is also decided by the designer
and made implicit in the device's design. Granted, a
thermostat is typically not considered “intelligent”. Note,
however, that the exact same way of construction is used for
expert systems, which are generally considered AI systems
and often cited as a major milesone for AI of the past four
decades. These systems have in common that they take input,
e.g. heat (in the case of thermostat) or a description of patient
symptoms (in the case of medical diagnosis), and process this
without concern for its relevance to their own task, as this is
guaranteed by the system's users, as is also the guarantee that
the input be noise-free – not containing irrelevant data. These
aspects are shared by virtually all modern AI systems.
Because they are thus hard-wired to do a sigle task, and their
input is fixed rather rigorously beforehand, the input's
meaning is decided for them. This means that the relation of
the input to what they do with it, and the behavior they are
capable of producing, is implicit in their design from the
outset. It should be clear then that such systems cannot
become truly autonomous: Since they cannot learn to classify
inputs (after they leave the lab), they cannot handle diversity,
and thus cannot become general. This limitation is inherent
in them as a result of the inherent properties of the
methodology used to develop them.

A learning system using modern artificial neural networks
(ANN) to do the heavy lifting is in some ways a bit more
capable than the above systems, but only slightly so. ANN-
based systems still have their task handed to them by their
designer, their input variables defined beforehand, including
their operating ranges. They can only learn a single task,
whether it will be identifying letters on number plates of
automobiles, finding human faces in photographs, or
adjusting the autofocus on your digital camera in realtime,
because they have no mechanism for separating out that
which is new and that which is old, as already mentioned in
the discussion of classification above.

Another important limitation of modern machine learners,
and one which affects their potential for generality and
autonomy, is that after they are built and deployed their
learning must be turned off. This is because their design
prevents them from changing in predictable ways after they
leave the lab: “In the wild” they change unpredictably. Thus,
currently no system exists that can handle input that is

4 These will be the same whether the system is physical and
operates in the physical world, or virtual and operates in some
more abstract information environment.

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 4	

unexpected or unforeseen (by the system’s designer), as
handling such input would require autonomous learning.
Current systems must therefore “call home” when facing
circumstances outside of their strictly defined operating
ranges—i.e. re-design by the system’s engineers.

2.3 Semantics and Autonomy
The problem with constructionist methodologies lies in
forced semantics: The meaning of the data to be imbued to
the system is provided directly by the system’s designers
when the systems are designed. Current AI systems cannot
handle the unforeseen or unexpected because the methods
encourage a task-driven design, where task-specific features
are transferred directly into software via human-designed
huristics. What is needed are methods that help the designers
move to the next level up, by supporting and encouraging
designs where mechanisms for system-created operational
semantics are sought instead. Put more succinctly,
constructionist methods are strictly allonomic – they rely on
the semantics and intelligence of the designer, instead of
allowing the system itself to generate its own meaning. An
autonomous and general system is independent of particular
tasks, and achieving such task independence calls for the
system to be provided with the mechanisms that allowed the
human designer himself to come up with task-specific
heuristics in the first place: The system itself should be rigged
so as, when given a specification of one or more tasks, to
come up with useful heuristics on its own.

3 Which Methodology: Operational
Characteristics of Adaptive Systems

Let’s now look a bit closer at the features that we seek for an
autonomous and general artificial intelligence [Thórisson &
Nivel, 2009]. Adaptation involves the ability to achieve high-
level goals in spite of obstacles presented by the environment.
Such obstacles come in many forms, but generally they
represent a mismatch between the system's knowledge
needed for achieving its goals and the way the world operates
or is currently structured. An intelligent system must be able
to (a) assess the world it operates in, (b) realize ways of
achieving its goals, (c) produce the effects on the
environment that achieve those goals, and (d) evaluate this
effect in light of its goal(s).5 We can say that for an agent A
with knowledge k, in situation ϰ, seeking goal g in ϰ, an
obstacle is a state of ϰ that prevents A from directly applying
k to change (some subset of) ϰ to (subset) g. To know whether
k will achieve g, A must have knowledge of the relevance of
k to ϰ, and the ability to apply it to ϰ to achieve g, as well as
to assess whether and when g has been achieved.

5 Biological and robotic systems assess the environment via some
form of vision, touch, and hearing, the adaptation is done via
learning, thinking, and meta-cognition, and the behavior is
produced via controlled, targeted actions of a body. Disembodied
intelligences – e.g. an intelligent software system that “lives in the
cloud” – while not being in control of an actual physical body or

3.1 Learning for Generality
Concerning capabilities that set systems whose intelligence is
general apart from whose intelligence is not, let’s look at four
already alluded to above.

1. Although it is given in this context, we will mention
first the fundamental ability to learn. This requirement
excludes all expert systems and similarly “hard-wired”
systems (e.g. chess programs of the 90s), as well as many
others touted as milestones in the field. It is no surprise that
these are not considered “general”, but perhaps somewhat
surprising the high regard in which many have held them.

2. Second, the learning must be always on, most notably
after the system leaves the lab – after the designer releases
the system for good into its target operating environment.
This excludes all artificial neural networks, since these have
to be frozen at release time due to the unpredictability in their
behavior that otherwise would arise. While any kind of
learning is better than no learning, the most useful learning is
the one accompanied by the capacity for abstraction, what has
been called induction—the ability to generalize from
experience [Wang 2006].

Now is a good time to remind ourselves that the kinds of
systems we are interested in should be able to operate with
insufficient knowledge—in fact, the ability to learn is not
necessary if we have complete knowledge already [Wang
2006]. The same holds for induction with respect to
incomplete knowledge: Induction is most useful when
combined with an ability to hypothesize causal links between
newly discovered phenomena.

3. So, third, a necessary function for generality is the
ability to accept inputs with little or no prior familiarity to the
system, identify patterns in the input, model their relation,
and generalize from it. It could be argued, in fact, that this is
a central mechanism of any learning system embodying
lifelong continuous – or cumulative – learning, since the same
mechanism is needed to separate irrelevant patterns from
relevant ones, and to separate old and valid classifications of
patterns from new ones, so as not to unlearn what has already
been learned (avoiding negative transfer of training).

4. Fourth, armed with these capabilities, the system must
(a) be capable of modifying its models of the environment,
which due to incomplete knowledge will have unavoidable
conflicts and errors, based on the quality of their usefulness
for achieving goals and predicting how the environment
works, through a feedback loop outside the system. This, in
effect, is the learning by experience mechanism, which is
necessary for all systems capable of adapting to environments
not known at design time.

5. Fifth and lastly, a mechanism that will greatly affect a
system's adaptability its capacity for cognitive growth—of
adapting its adaptation mechanisms. In other words, its
ability to learn to learn. A general-but-mostly-static learning

having physical perception mechanisms such as cameras and
microphones, will also consist of these functional structures,
otherwise it would not be an independent system separate from its
environment. Here we will assume that such an explicit separation
between the system and its environment exists.

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 5	

mechanism may be sufficient for a certain set of
environments with a particular range of complexity. But an
ability to develop new learning methods would allow a
system to develop improvements or even brand-new learning
mechanisms, and to adapt “from scratch” to a wider range of
environments. It would enable an intelligent system to
develop and subsequently choose the most appropriate
learning mechanism for the environment and task at hand at
any time. This can likely increase a system's learning and
adaptation abilities by orders of magnitude. A prerequisite for
this to be possible is a system's propensity for pattern
classification: Without a sufficient level of input
classification fidelity an appropriate learning mechanism (or
any other cognitive mechanisms for that matter) cannot be
correctly chosen in each circumstance. (Another requirement
is that the system must be able to turn this classification
capability onto its own control architecture, and equally
importantly, that it can program/re-program itself. We will
get back to this in more detail below.)

3.2 An Illustrative Example
To put this more succinctly, given environment e, in a current
state s1 (es1), and agent A with (compound) goal g1 to bring
about state s2 using method m1, let’s say behavior b1 could
satisfy m1 and bring e directly from the current state s1 to s2
(es1 → es2) to achieve g1. In this example the agent has never
seen es1, however, and does not contain b1 in its memory.
Thus, from identifying es1 A cannot produce b1 immediately
or directly. This calls for adaptation behavior, which requires
sub-goal(s) to be produced that entail any, some, or all of the
following covert and overt operations on part of A: 1.
Reasoning about how to achieve s2, resulting in any, some, or
all of the following operations; 2. Experimenting on the
world to obtain b1 or an alternative suitable behavior; 3.
Analyzing g1 to see how much variation in s2 and m1 will still
count as g1 having been achieved; 4. Modifying g1, or
producing (a set of) alternative goal(s) which result in an
acceptable modifications of, or alternatives to, m1 and/or s2;
5. Evaluating through reasoning and/or experimentation on
the world whether g1 is well formulated in its present form,
leading to 4 or 6; 6. Reconsidering g1, leading to 4 or to
abandoning g1 altogether.

Adaptive behavior 3 requires g1 to have associated with it
some range of acceptable deviations, or being amenable to
computation of such ranges. While adaptation behaviors 3, 4,
5 and 6 are typically not seen, strictly speaking, as “achieving
one's goal(s)”, they frequently happen in the real world, and
it should be obvious that any learning human being will
occasionally abandon goals, as well as selecting some in
favor of others. Note that such considerations are only
relevant for an agent with multiple goals situated in an

6 If intelligence were a mathematical phenomenon we could
proceed in our AI research as we do with other mathematical
phenomena—through sound mathematical methods. This not being
the case, however, means that such methods are fundamentally
inappropriate as a main approach—experimentation is the obvious
choice for any experimental phenomenon; baring that possibility,
as for instane in astrophysics, software modeling and simulation is
the second most appropriate. How difficult it turns out to

environment with noticeable uncertainty. In this kind of
adaptation, evaluation of the cost of modification,
abandonment, and acceptable deviations, are an important –
and most likely a necessary – part of the learning.

3.4 Conclusion from Operational Characteristics
We can only conclude, again, that the machine learning we
would need for a machine with general intelligence and high
levels of autonomy are not well served by a methodology that
keeps system design close to one or more particular tasks.
Current popular programming languages used in AI (C++,
Python, LISP, etc.) seem a rather poor match to help us
develop the meta-skills, such has learning to learn, reflection
(see below), and flexible pattern matchings, needed to move
to higher levels of intelligence and autonomy.

4 Which Methodology: The Argument from
Constraints

Traditional software systems’ architectures consist of a set of
software units, or modules, which in turn run on a particular
hardware implementation, whose joint runtime behavior
defines the system's capabilities. A software architecture
contains thus, by definition, several mechanisms that interact
to produce a system's overt and covert behaviors. What we
call control architecture is the software and hardware
concerned with managing the long-term holistic behavior of
the system; hardware must be included in that because no
computation or other real-world effect can be realized
without a physical embodiment. Natural intelligent systems,
such as humans, are capable of exhibiting a variety of
complex overtly observable behaviors, most of which are the
result of years and decades of learned adaptation. Some part
of this variety stems from fundamental principles of the
underlying cognitive architecture, and some of it are merely
side-effects of nature's specific implementation(s).

The covert behaviors of the various kinds of control
architectures that can bring about intelligent behavior have,
however, turned out to be very difficult to reverse-engineer.
While cognitive scientists are dedicated to reverse engineer
the particular mechanisms of natural intelligences, artificial
intelligence is more focused on the general principles of that
class of mechanisms. Nevertheless, both groups are in effect
looking to reverse-engineer the special natural phenomenon
we call “intelligence”. This reverse-engineering effort
proceeds through the application of particular methodologies,
whose features tend to be heavily guided by the background
assumptions. And since intelligence is a natural
phenomenon6 we should use the phenomenon in question to
help us pick the best methdology. One way is by scrutinizing
the constraints that that phenomenon must satisfy.

characterize and understand intelligence mathematically remains
unclear; as of today, finding “the solution” to intelligence solely
through mathematics is about as likely as it would have been for
the Wright brothers build a flying machine by studying
mathematics. As it turned out, airodynamics was developed much
later, by reverse-engineering machines already airborne
[Thórisson 2013].

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 6	

4.1 Understanding Constraints
For any system Sx that we may want to model, and which is
subject to few constraints, a large set of possible
implementations can produce the observed behaviors of Sx;
practically speaking we will have quite a bit of freedom in
how we capture the system in our re-creation – a large set of
model variants could be conceived of that replicate the
targeted features of Sx equally well. If it is rolling behavior
we want to model, a round rock, a melon or an orange all
suffice to replicate the rolling behavior in a slope or when
pushed: Reverse-engineering “rolling behavior” of an object
means discovering that its design must approximate a circle.
As the number of constraints that Sx must meet is increased,
a decreasing set of model variations could possibly reproduce
its capabilities. The steering mechanism on automobiles has
for instance numerous possible implementations, some better
than others, but all capable of making the car turn. It took
centuries for the current mechanisms with this purpose to be
developed, and they are based on many inventions and
innovations, most of which are necessary to achieve the full
behavioral range of modern automobiles. Because the list of
constraints on a modern steering mechanisms includes a lot
more than simply “rolling”, the set of possible designs is
heavily limited by these constraints.

Now, if we want to uncover the set of control
architectures capable of producing the kind of adaptive
behavior we see in natural intelligences we must identify the
key principles that enable these architectures to produce their
results. This is not as simple as it sounds, in particular
because these principles must be inferred from opaque covert
behaviors that, while produced by the control system, are
only a tiny fraction of the full repertoire of what that – or any
– cognitive system found in nature are capable of.

4.2 Constraints on Systemic Behavior
A biological cognitive system A is capable of achieving goals
through a wide range of covert behaviors b of which some bn
⊂ BA will be observed to be produced in a task-environment
en ⊂ E, such that:  	

b1 are produced in e1
b2 are produced in e2
  … 
bn are produced in en

and this full set being the behavioral repertoire of A: RB(A).
Now, b1 is picked by a system designer as an example
behavior that his artificial system A' should be able to
produce in a simplified environment e'1 ⊂ E; let’s say b1 is
e.g. winning games of blitz chess (the behavior), e'1 is blitz
chess games (the task-environment consisting of the rules of

7 By “complexity“ we mean something like “intricacy“, such that
when the intricacy of the task-environment increases, the set of
behaviors that can achieve the goals of that task-environment is
reduced, relative to any and all behaviors that could be expressed
in that task-environment but do not achieve the goal(s). In the
vernacular this means “the task gets harder“. In our discussion
complex task-environments are also harder to formalize.

chess plus time constraints), and E is a set of board games.
Scientists and engineers now venture to build A' using current
(constructionist) methodologies, using b1 as a test case to
measure the evolving design against. Their hope is that the
system thus built, and the principles and mechanisms that
enable A' to produce b1 in e'1, will replicate some important
fundamental principles behind the full system capable of
RB(A), and turn out to be general enough to allow A' to
produce a larger set from RB(A) than just the example
behaviors b1 (preferably the full repertoire RB(A)).

Even though A' may ultimately be able to produce b1 in
e'1 (RB(A)= b1|e'1), assuming the constraints that e'1 brings on
the behavioral repertoire are from those of e'2, e'3, ... e'n, A' is
unlikely to be capable of b2, b3, and b4, not to mention the full
behavioral repertoire of A, because (a) the constraints of e2,
e3, etc. were never considered as design targets for A', and
(b) neither were any of the b2, b3, etc. As the complexity7 of
the targeted task-environment increases from which the
example task is drawn, the larger the number of constraints
on the target system brought by it. Given the complexity of
tasks and environments that general (human-level)
intelligence is capable of addressing, we must assume that the
number of constraints it brings on the target system – general
intelligence – is rather large. The resulting artificial system
A' thus built is therefore much more likely to be limited to e'1
than to generalize beyond it, especially for task-environments
more complex than chess.8 A system built to play e.g. blitz
chess is more likely to be strictly limited to chess than to be
extendable to Backgammon and Go, as the rules of these
games were never considered by the system’s designers.
Using this methdoology, counter to the the original hope of
going beyond the example task, the machine is stuck within
the confines of the original constraints chosen for its design.

What we see here is a limitation of this kind of approach
as a method of systems research: While reverse-engineering
ultimately requires us to actually build our model to see if it
can produce the full set of behaviors we hoped for, this only
works if the correct constraints are brought into the
engineering effort from the outset. This is because each
additional en requires the system to be capable of producing
an increasingly larger yet more specific set of behaviors,
including the meta-ability to differentate between ens.
Considering a wider range of behaviors, tasks and
environments pushes the design considerations to include a
wider scope than a single example task can provide. A system
that meets a large set of constraints in its behaviors (i.e. each
en requiring the system to behave in specific ways and not
others, thus imparting constraints on the system) has fewer
degrees of freedom—fewer ways of realization—than
another that must meet fewer constraints. Bringing (too) few
constraints to bear on the development effort, from among the

8 It is of course not categorically impossible that, through pure luck,
such an approach could produce a system that generalizes beyond
the inital task. However, with an increasing number of constraints
the probability of such luck grows quickly and asymptotically
towards zero.

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 7	

myriad of tasks natural intelligences are observed to be
capable of, such as building “intelligent” systems that target
a small isolated task, is likely to completely leave out
systemic features that are absolutely necessary for producing
the capabilities of natural cognition.

Considering too few constraints opens up the design
possibilities and reduces the chance of finding the “golden
key” (if it exists); on the other hand, considering a large set
of constraints complicates things, and often makes the
research exceedingly more difficult. Increased effort and
closer attention to how we pick our constraints will help us
end up with the necessary and sufficient constraints that allow
us to build truly general systems.

4.2 Two Lines of Inquiry
Our starting point for exploring what kinds of control
architectures can bring about intelligent behavior must
include two lines of inquiry. First, we need to try – using any
relevant method available – to hone in on which observable
behaviors and features are more likely than others to serve as
good (“the right”) constraints to steer design and reverse-
engineering efforts to the small subset of architectures
capable of producing thems. Second, and in parallel, we need
to hone in on the key candidate architectural principles that
enable such intelligent behavior to be produced, through any
sensible means possible (including using the observable
behaviors hypothesized to help with that effort).

The combination of these two lines of inquiry brings
about a new insight into what our methodology really must
look like: Yes, we need to identify a set of behavioral features
and characteristics B = a, b, … n sufficiently representative
of the ultimate target range of behaviors aimed for. We must
ensure that this subset of target behaviors is as wide as
possible, because we want to use these to hone in on the kinds
of characteristics are critical for higher-level cognitive
control (e.g. human-level intelligence). The obvious way to
do this is by observing natural intelligence in action:
Constraints for our reverse-engineering efforts must come
from the phenomenon that we wish to understand and
(selectively) imitate. We must not forget that in AI research
the tasks that natural intelligences are observed to be capable
of are not our target—our target is the general architectural
principles hidden inside the animal's skull that enable this.

Selecting any single behavior bn may be tempting, and
seem like a good strategy—if we could only find a good
representative task that promises to help us hone in on the
architectural principles of cognition. But to do this would be
a mistake – unless – we take extra steps to ensure that that
subset is highly likely to contain behaviors and capabilities
that help us constrain the set of potential architectural
mechanisms underlying the intelligent system's key
principles of operation. This is, of course, just as difficult as
it sounds. Some key candidates for this role have, however,
already been mentioned: Operating under assumptions of
continuous external time (world clock), learning –
continuously and cumulatively – new tasks in new
environments. Other characteristics include operation and

adaptation in spite of incomplete knowledge, insufficient
time, and limited computational power.

But identifying a promising set of behaviors that helps us
constrain the possible architectural principles is not enough.
We must, at the same time, propose and evaluate practically
implementable mechanisms that could, in the right
combinations, bring about the kind of computations that
might produce the range of representative behaviors thus
identified. One stands out as being especially interesting in
this respect: self-inspection, also called reflection.

5 Which Methodology: Cognitive Growth
We now turn to our last topic in answering the question
“which methodology?”: Reflection and cognitive growth.

The ability to deal with new and unforeseen tasks,
environments, and situations, is central to the notion of
intelligence. As we have discussed, to achieve such
generality it is not sufficient for a system to be pre-
programmed for particular task, environment, or domain –
more general principles must be involved. One feature of
natural intelligence that seems likely to matter for broad
generality is cognitive growth—the active development of
the cognitive mechanisms themselves, as the system adapts
and learns to deal with a new tasks, circumstances, or
environments. Cognitive growth calls for the system
programming/re-programming parts of itself, which in turn
calls for some form of reflection—the ability of the system to
inspect and evaluate itself, to assess the development course
it is on, to reason about which ways are more likely to put it
on a desired path of growth than others, and so on. If we want
an autonomous system, such self-programming must be
largely self-organizing to enable a system to adapt to
challenges unforeseen by the system’s designer. Sure, every
system needs of course some fundamental basic principles of
operation that are protected from self-re-programming,
otherwise the system's course of cognitive development
would be completely unpredictable.

In nature, a system capable of cognitive growth must
ensure that some core cognitive control mechanisms are
stable enough to guarantee survival of the species, if not the
individual. In artificial systems this principle of a protected
core is valid as well, but has a slightly different purpose: The
core control principles of engineered systems are there to
enable the system's designers to guarantee predictability, at
some given level of abstraction, of the system's behavior
throughout its lifetime.

Central to our discussion here is the hypothesis that
cognitive growth cannot occur without some transparency of
a system's operational semantics [Thórisson & Nivel, 2009]
[Thórisson 2012]. Such transparency allows the system itself
to inspect its development to e.g. correctly bootstrap its own
growth, and re-program itself throughout its lifetime for new
tasks, scenarios, and environments. A system with
transparent operational semantics has one of the necessary
conditions to re-program itself; such a system is in principle
reflective-prepared. To leverage the reflectivity it must also
have control of the necessary processes to make use of it.

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 8	

Another necessary feature to support cognitive growth is
auto-catalytic knowledge acquisition—the ability of the
system to acquire needed knowledge autonomously; auto-
catalysis and reflectivity are thus necessary architectural
principles for supporting cognitive growth. Thirdly, such
systems cannot rely on a system designer to tweak them in
light of unexpected tasks, situations, or environments,
meaning that the system must be endogenous – free from
direct re-programming from the outside. These are important
enough for us refer to them with an acronym, AER.

FIG. 2. The Constructivist AI Methodology (CAIM) puts the
nature of self-constructive systems in the foreground, helping
the system designer to think about intelligence less like a hand-
crafted artificial machine (top) and more like a complex
growing, developing, self-organizing system like a forest
(middle) [Thórisson, 2012]. This helps elucidate what kinds of
tools are appropriate for the task (bottom).

Humans are most certainly capable of adapting to new tasks,
situations, and environments, and of course we should take
inspiration from nature, as natural intelligence, in the very
least human intelligence, meets the requirement of being
auto-catalytic, reflective, and endogenous, and cognitive
growth is a fact of human learning and mental development.
We humans have an information network to help us bootstrap
our cognitive operation – referred to as parents, school,

society, etc. Without these, especially the first one, human
intelligence is unlikely to bootstrap itself successfully.

6 Self-Constructive Cumulative Learners
We have now reviewed some arguments for why current
methodologies, which we can characterize more or less as
constructionist, are insufficient to develop truly atuonomous
general learning machines. The preceding sections all lead to
the same conclusion: That a defining feature of generality and
autonomy is the ability for an intelligent system to manage –
control – its environment, itself, and its own cognitive
growth: A system’s general learning mechanism – if it really
is general – should be applicable to the system’s own
cognitive system. To build such systems requires a different
methodology than what has been most widely used to date.
The preceding pages have also addressed aspects that provide
a foundation for a new methodology. In light of the AER
requirements to achieve continuous cumulative learning,
domain-independence, self-construction, and autonomy, we
seek a methodology that can help us think more along the
lines of growth and development than manual construction.
To paint a caricature, we want to think of autonomous
cumulative learners not as machines that must be built brick
by brick, bolt by bolt, and line by line, but like a garden or
forest whose growth must be nurtured—a methodology for
self-constructive systems (FIG. 2).

 A process of learning entails that as a system S becomes
better at achieving a goal g in one or more task-environments
{e1 ... en | e ∈ E} trough experience, where “better” is
measured in some relevant way such as the appropriateness
of a proposed or executed solution, the speed at which it is
produced or executed, and/or its quality. With experience the
system may be able to achieve g, and over time it achieves it
increasingly reliably through particular mental operations,
through available sensors and actuators, which we will call
tasks T1. If tasks T1 are performed only using its basic/atomic
control methods – those provided to it by its designers at the
outset – it is likely that by improving the control structures
themselves – adapting them to the particulars of T1 – would
improve performance on tasks T1. It is also possible that S
may produce some modification of T that, given some
modification of some set of overt and covert control
mechanisms, CS, would improve performance on T1, or
potentially enable a set of new tasks T2 that achieve g even
better according to the chosen evaluation criteria. Adapting
CS would mean producing a new or modified set of control
mechanisms that the system was not provided with from the
outset, whose form and function is based on the system's
experience, and may partly or fully replace the existing CS.
This requires some form of self-programming [Nivel &
Thórisson, 2009, Thórisson et al. 2012].

Self-programming, in the sense of a cognitive system re-
designing and re-implementing parts or full sets of its own
cognitive functions, and especially repeated such operations
– recursive self-improvement – requires models of self
[Steunebrink et al. 2016]. As a controller of controllers, such
self-programming calls for a meta-controller whose target
modeling task is the system itself in its domain. The same

IJCAI	2017	Workshop	on	Architectures	for	Generality	&	Autonomy	 9	

rules apply to the meta-controller as to the lower-level
controller: It must obtain a model (or models) of its domain
and use it to propose, test, and implement new (and/or
modified) cognitive functions that partially or fully replace
those that were used before. In addition, should the
environment change, such modifications need to be
accompanied by methods for the system to identify when
situations call for a reverting or switching between alternative
ways of operating, for instance if the task or environment
changes in ways that make the new methods less effective or
inappropriate for the kinds of bootstrapping that may need to
happen to handle new situations.

7 Conclusions & Future Work
It would seem clear that even if only half of the topics
discussed in this paper were relevant and important for
achieving general intelligence in a machine, a thorough
revision of current methodologies offered by computer
science and AI would be in order. Together, the arguments
strongly favor a different approach to the one presented by all
standard software development methodologies, as these take
a human-centric approach where the human designer is
responsible for turning a task definition into task-specific
algorithms, with little or no serious consideration for bringing
autonomy to the system being designed. As a methodology
for standard software projects this makes perfect sense; as a
methodology for developing autonomous generally
intelligent machines this presents a serious mismatch
between the target system and the approach to its design.

We have done some work along the lines of considering
what a more appropriate methodology might lok like; the
Constructivist AI Methodology (CAIM) targets the nature of
general intelligence and autonomy, with an emphasis on self-
construction through cumulative learning based on modeling
causal relations. We propose a set of assumptions – which,
just like the central thesis of AER – are scientific refutable
hypotheses. Details on these can be found in [Thórisson
2012], [Nivel et al. 2013], [Nivel et al., 2014a] and [Nivel et
al., 2014b]. While this takes some steps in the right direction,
plenty of work is neede on which methodologies can help us
get more quickly the results we are interested in: machines
with autonomy and general intelligence.

Acknowledgments
This work was sponsored in part by the School of Computer Science
at Reykjavik University and by a IIIM Centers of Excellence Grant
from the Science & Technology Policy Council of Iceland.

References
[Bongard et al. 2006] J. Bongard, V. Zykov & H. Lipson.

Resilient Machines Through Continuous Self-Modeling.
Science, 314(5802):1118-1121, 2006.

[Cully et al. 2015] A. Cully, J. Clune, D. Tarapore & J-B.
Mouret: Robots that can adapt like animals. Nature,
521(7553):503-507.

[Nivel & Thórisson 2009] E. Nivel & K. R. Thórisson. Self-
Programming: Operationalizing Autonomy. Proc. 2nd
Intl. Conf. on Artificial General Intelligence, 150-155,
2009.

[Nivel et al. 2013] E. Nivel, K. R. Thórisson, B. R.
Steunebrink, H. Dindo, G. Pezzulo, M. Rodríguez, C.
Hernández, D. Ognibene, J. Schmidhuber, R. Sanz, H. P.
Helgason, & A. Chella, & G. Jonsson. Bounded Recursive
Self-Improvement. Reykjavik University School of
Computer Science Technical Report, RUTR-SCS13006.
arXiv:1312.6764 [cs.AI]

 [Nivel et al. 2014a] E. Nivel, K. R. Thórisson, B. R.
Steunebrink, H. Dindo, G. Pezzulo, M. Rodríguez, C.
Hernández, D. Ognibene, J. Schmidhuber, R. Sanz, H. P.
Helgason, & A. Chella. Bounded Seed-AGI. Proc. 7th
Intl. Conf. Artificial General Intelligence, 85-96, 2014.

[Nivel et al. 2014b] E. Nivel, K. R. Thórisson, B. R.
Steunebrink, H. Dindo, G. Pezzulo, M. Rodríguez, C.
Hernández, D. Ognibene, J. Schmidhuber, R. Sanz, H. P.
Helgason, A. Chella & G. Jonsson. Autonomous
Acquisition of Natural Language. Proc. IADIS
International Conference on Intelligent Systems & Agents
2014, 58-66, 2014.

[Stork 1998] David G. Stork (ed.). HAL’s Legacy: 2001’s
Computer as Dream and Reality. Cambridge, MA: MIT
Press. 1998.

[Steunebrink et al. 2016] Bas R. Steunebrink, Kristinn R.
Thórisson & Jürgen Schmidhuber. Growing Recursive
Self-Improvers. Proc. 9th Intl. Conf. Artificial General
Intelligence (AGI-16), 129-139, 2016.

 [Thórisson & Nivel 2009] K. R. Thórisson & E. Nivel.
Holistic Intelligence: Transversal Skills and Current
Methodologies. Proc. 2nd Intl. Conf. Artificial General
Intelligence, 220-221, 2009.

[Thórisson 2012] K. R. Thórisson. A New Constructivist AI:
From Manual Construction to Self-Constructive Systems.
In P. Wang and B. Goertzel (eds.), Theoretical
Foundations of Artificial General Intelligence. Atlantis
Thinking Machines, 4:145-171, 2012.

[Thórisson et al. 2012] K. R. Thórisson, E. Nivel, R. Sanz &
P. Wang. Approaches & Assumptions of Self-
Programming in Achieving Artificial General
Intelligence. Editorial, Journal of Artificial General
Intelligence Special Issue, Self-Programming, 3(3):1-10,
2012.

[Thórisson 2013] K. R. Thórisson. Reductio ad Absurdum:
On Oversimplification in Computer Science and its
Pernicious Effect on Artificial Intelligence Research.
Proc. Workshop Formalizing Mechanisms for Artificial
General Intelligence & Cognition, 31-35. Institute of
Cognitive Science, Osnabrück, 2013.

 [Wang, 2006] P. Wang. Rigid Flexibility:The Logic of
Intelligence. Springer, 2006.

