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Abstract. AGINAO is a project to build a human level AGI system by applying 

the embodied approach on the NAO humanoid robot. A brief introduction to the 

AGINAO cognitive architecture is presented, followed by a presentation of the 

virtual machine design, the instruction set, and the algorithm to construct the 

building blocks of concept nodes: a heuristic search in the space of tiny 

programs – the codelets of the emergent architecture. Unlike the universal 

search or evolutionary programming approaches, the created programs are not 

executed for evaluation of their fitness at this stage, leaving it for other 

modules. The algorithm focuses on avoiding apparently useless pieces of code, 

yet covering the remaining program space uniformly. 
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1   Introduction 

This paper introduces the AGINAO project – yet another attempt to build an artificial 

general intelligence (AGI) system capable of matching or even exceeding the human 

level (HL) of intellectual skill. Our approach uses the NAO ver. V3+ humanoid robot 

manufactured by Aldebaran Robotics [1], as a testbed. Since the processing power of 

the robot’s built-in computer seems insufficient for the cognitive task, with as much 

as up to 90% of the available resources being consumed by the robot‘s internal 

processes, the NAO is merely set as a front end to communicate the sensory and 

actuators information via a connectionless UDP link to a powerful host. The NAO 

seems a good choice for the robotic/embodied approach to AGI, being a trade-off 

between inexpensive toys, mostly fragile and lacking a vision system, and adult size 

sophisticated prototypes, most of which are not commercially available. NAO is 

equipped with two 640x480 color cameras, 4 microphones, 2 speakers, tactile/force 

sensors, gyro, accelerometer, dozens of joints with motors/sensors, WiFi/twisted-pair 

connection and GEODE 500 MHz CPU running Linux. 

The robot/host communication is completed and current efforts focus on writing 

the cognitive engine software. When ready, one or more NAOs would be tested in a 

preschool-like environment, with the intention that most of the robot’s knowledge and 

capabilities will be acquired with machine learning methods during interaction in the 

real world. We also conjecture that the power of a contemporary desktop is sufficient 

for achieving the HL AGI, and the rush for a virtually unlimited power is unjustified. 

                                                           
* Submitted to AGI-11 conference 



1.1   AGINAO cognitive architecture 

The fundamental notion of the AGINAO cognitive engine is a concept, an entity  

intended to be close to what a 'concept’ in cognitive sciences means. Without going 

into details of the theory of mind behind our cognitive architecture, below only those 

aspects of the design are presented that are indispensable for the main topic of this 

paper, namely, the heuristic program search algorithm. Technically, the concept is a 

structure consisting of some data fields, not listed below, and a program – or more 

precisely a subroutine – of the form: 

 
int *prog(const int *src1,..., const int *srcN) 

{ static int memory[size]; 

  int *loc1,..., *locK; // local variables 

    // program code 

  } 

 

A program may be either a short piece of code, or a sophisticated one, calling other 

programs (concepts). All concepts form a dynamic and continuously changing 

hierarchy of interconnected concepts (a directed graph with cycles). New concepts 

emerge, the useless or obsolete ones are discarded. Even more likely, it is the 

connections rather than the whole concepts that are added or removed. The output of a 

concept may be connected to a number of other concepts (order of inputs matters). 

The only data type to transfer information between the concepts is an array of integers 

of a variable but known size, quite a general purpose type, anyway. 

One may think of a concept program as like an ANN neuron with N inputs and one 

output. Such an analogy is insufficient, however, as the programs are not executed in 

the hierarchy. It is better to think of the collection of concepts as a depository of 

programs that may be launched on request as runtimes. More than one copy of the 

same code (possibly a thousand) may be executed concurrently, processing different 

data. One may also envision concepts as species, and runtimes as individuals of a 

species, and connections as dependencies between the species, all of them in an 

artificial environment. The primitive organisms feed more complex. Individuals come 

forth and pass away. Species rise and fall. Once an ecological niche is empty, it will 

be filled with new species. The natural world analogy is incomplete, however. The 

species do not evolve. Lack of living (executed) individuals doesn’t mean a species is 

immediately extinct. Two different species may share the same ‘genotype’, as e.g. a 

program to add two integers may have a different semantic meaning in various 

locations of the concept hierarchy. 

At the bottom of the hierarchy there are atomic concepts, non-removable ones, 

each containing a predefined piece of code (“bottom” does not necessarily mean 

“root” in the hierarchy). The atomic concepts constitute the low level sensory and 

actuator functions. Once a new sensory arrives from the robot, a related piece of code 

is launched as a runtime. Likewise, an atomic actuator’s code may be executed to 

cause a transfer of some control data to the robot. 

As pictured above, a program may also contain a static local integer array, in which 

case different concurrent runtimes may overlap and share the memory. Both, the static 

local memories and the structure of the concept hierarchy, may be regarded as a long-



term procedural, semantic and episodic memory of an artificial brain. The data 

transferred between the runtimes, on the other hand, may be understood as short-term 

or perceptual memory. 

The inputs of a concept program are of type const and may not be affected. This 

is because each input is an output of another runtime that may be connected to many 

concurrently executed runtimes of the same or different concepts. 

1.2   Life cycle of a runtime 

Runtime execution is controlled by the following variables: 

 

• expiration time – a real time deadline 

• resources – a limit of the virtual machine cycles to be utilized 

• priority – a parameter to control the order of execution 

 

A runtime may be in one of the following six states: 

PENDING – runtime is requested but awaiting other inputs to arrive. If a concept 

node has a single input only (one parameter to pass), it switches immediately to the 

next state. In other cases, more than 90% of the PENDING runtimes would possibly 

expire before the requested data is delivered. 

CREATED – ready to run runtime is awaiting execution in a priority queue. 

Temporal expiration rules apply. 

EXECUTED – runtime code is being executed and its resources are exhausted. 

Context switching applies and the runtime may be placed in the priority queue again, 

or even preceded by more urgent tasks, and discarded prematurely due expiration. 

SLEEP – if a temporal instruction is encountered, a runtime switches into a 

waiting state, until the rise time or expiration time comes, whichever is earlier. 

TERMINATED – runtime has finished execution in a non-fatal manner and 

returned an output array. The related reinforcement learning (RL) values are updated. 

If still having enough resources, the runtime starts its exploration/exploitation routine. 

A concept that has launched the terminated runtime contains a dynamic list of other 

concepts, i.e.: next actions to be selected. Contrary to the common convention, we 

would use the term exploitation for any – not only greedy – selection of the next 

action to be performed, and exploration for the process of adding a new concept to the 

list of concepts. Selecting an action means forwarding the output array to a concept, 

in order that a runtime be launched. One of the exploration methods implies creating a 

new concept from scratch – that is the topic of this paper. The runtimes of the atomic 

sensory concepts come forth in the TERMINATED state immediately after being 

launched. 

DISCARD – if a terminated runtime has already exhausted its resources for 

exploration/exploitation, or expired, or the execution reported a fatal error, it goes into 

its final state. The actual releasing of the memories may be postponed until all of the 

dependent runtimes report unlocking the runtime’s output. 

 

A new concept to be added to the list of linked concepts in the exploration process 

may be selected/created in one of the following ways: 



CREATE_NEW – make a new from scratch – the topic of this paper. 

JUMP_EXISTING – link to a concept already settled in the hierarchy – it may 

cause a graph cycle to emerge. 

COPY_EXISTING – copy the code of another concept to make a new one. 

INTEGRATE – join two or more directly connected concepts to form a new one. 

The integration of the concepts is the basic technique for evolving the sophisticated 

concepts from the simpler ones, not discussed in this paper, however.  

1.3   Sample cognitive processes 

The following is a brief description of sample examples of low level cognitive 

processes related to the perceptual visual sensory. 

Imagine that 3 visual pixels arrive from the robot, each being a 5-tuple of the form 

{x,y,Y,U,V}, i.e. an array of 5 integers. A separate process causes a sensory 

runtime to be launched only if the amplitude of the signal (the difference between the 

current value and the former value) exceeds a predefined limit. If we are lucky, we get 

three runtimes in TERMINATED state, each outputting pixel coordinates and YUV 

value. Then, three related exploitation mechanisms select the linked concepts, forward 

the output and launch new runtimes in PENDING state. Happily, one of the linked 

concepts accepts 3 inputs, and its embedded program returns “1” if the 3 coordinates 

form a spatial pattern of being arranged in line, or exits otherwise. 

Now imagine an object moving in the visual area, causing 3 other pixels to arrive 

at three consecutive points in time. Unfortunately or not, the line detecting concept 

wouldn’t have a chance to be launched, because the first arriving pixel runtime would 

expire before the last one is present. Fortunately, the first two pixels pass through 

intermediate concepts to execute a temporal WAIT instruction, and copy the single 

input to output undisturbed. Finally, a concept program to detect a spatial-temporal 

pattern of a moving pixel is launched. 

1.4   Inspiration and similar approaches 

The foundations of the AGINAO cognitive architecture have been once influenced by 

the idea of Hierarchical Temporal Memory (HTM) [2]. Hawkins highlighted two 

important ideas: 1) most real-world environments have both temporal and spatial 

structure and a single algorithm to discover these patterns should take both aspects 

into account; 2) Better results can be achieved if the processing is conducted 

simultaneously at all levels of the hierarchy. 

Minsky in The society of mind [3] proposed to build a structure of many little parts, 

mindless agents. When we join these agents in societies, this leads to intelligence. 

Hofstadter’s Coderack [8] contains small pieces of programs, waiting to be executed. 

The EPIC cognitive architecture [4] consists of a set of interconnected processors 

that operate simultaneously and in parallel. When a processor receives an event, it can 

generate output to other processors by creating a new event of the appropriate type. 

As the eyes move around the visual scene, a complete and continuous representation 

of the objects currently present in the visual situation will be built up and maintained 



in the perceptual store, allowing the cognitive processor to make decisions based on 

far more than the properties of the currently fixated object [7]. 

At the core of the LIDA architecture [5] functions a network of large-and-growing 

collection of codelets, special purpose active processes, represented in a few lines of 

executable code, that can recognize a stimulus and pass activation to nodes in the 

slipnet to which they are linked, and those nodes pass activation in turn to other nodes 

to which they are related (linked), until a subset referred to as a percept is stable. 

Computations in DUAL [6] are performed by numerous simple micro-agents, 

hybrid at the micro-level devices, that consist of two parts: the symbolic L-Brain and 

connectionist R-Brain. The symbolic part represents some piece of knowledge, while 

the connectionist part represents its relevance to the current context. DUAL allows an 

uniform treatment of both declarative and procedural knowledge. 

2   Heuristic Search in Program Space 

By virtual machine (VM) we name a devised programmable computer, simulated in 

software on the host computer, having its own internal registers, flags, memory access 

and instruction set. Thousands of copies of the VM that share the same design may be 

run concurrently. Memory conflicts must be resolved. Execution time of a simulated 

instruction is longer than that of a machine code, but advantages prevail, to list: 

 

• illegal operations may be detected without causing a truly fatal error, 

• VM design is flexible and adjustable, to meet the requirements, 

• resources utilization may be easily controlled, 

• it has been observed that thread creation/detachment and context switching – the 

actions very common in our design –  last relatively long in C++ gcc library. 

 

The choice of a VM design is a question of a bit of art and a bit of applicability for the 

projected cognitive architecture. Even if the choice is not optimal, if only matches the 

criteria of an Universal Turing Machine, it would eventually work. What we really 

dream of is an instruction set that would let us create the basic concepts, that would in 

turn become ‘instructions’ of another more sophisticated Turing machine, possibly 

universal, simulated by our VM and  featuring a dynamic instruction set, that would 

lead to creation of yet another even more sophisticated machine, and so on up the 

hierarchy of concepts, with no an apparent end.  

One would assume that a very simple set, yet universal, would be the best and most 

flexible choice for our VM. On the other hand, however, a simple instruction set 

would be intractable by the heuristic search, thus useless for our desire to skip several 

orders of magnitude of processing time and make the building blocks favorable. 

2.1   Virtual Machine design and instruction set 

The VM has two general purpose registers of size int: A (or ACC) and IDX, and 

two binary flags: ZERO and MINUS. The ACC/IDX are set to 0 on launch, flags are 



set to false. Variables are of type int[n], the indices range [0]...[n-1]. The 

actual size of an int vector is accessible via designated instruction. The int is a 16-

bit signed int16_t (2 bytes) in the current implementation. Variables are numbered 

as follows: 

 

• var0 – output/return array, also accessible with special purpose instructions 

• var1,...,varN – source/input arrays (src1...srcN) 

• varN+1,...,varN+K – local variables (loc1...locK) 

• local static memory is accessible by special purpose instructions, starting with 

keyword MEM. Memory is of fixed size and initialized to 0 at concept creation. 

 

The instruction set consists of around 50 codes, some with parameters, and resembles 

those of the early 1980-ties microprocessors: 

  

• MOV A,IDX; MOV IDX,A; ADD A,IDX; SUB A,IDX; CMP A,IDX; 
the first argument is destination too, excluding CMP. Three latter instructions set 

flags. Same rules apply to other instructions, respectively. 

• XCHG A,IDX; exchanges the contents of the registers. 

• MOVI A,int; ADDI A,int; SUBI A,int; CMPI A,int;  

the operation is performed on ACC and the 1
st
 parameter int inline encoded. 

• MOVI IDX,int; ADDI IDX,int; SUBI IDX,int; CMPI IDX,int; 
same as above, but with the IDX register as argument and destination. 

• MOVX A,varN[idx]; ADDX A,varN[idx]; SUBX A,varN[idx]; 
CMPX A,varN[idx]; these instructions may signal an error of an attempt to 

access data out of range. N is an int encoded as 1
st
 parameter. 

• MOV A,varN[int]; ADD A,varN[int]; SUB A,varN[int]; 
CMP A,varN[int]; 1

st
 parameter is N, 2

nd
 is index, both int. 

• APPEND,A; SAVI [int],A; SAVX [idx],A; SAV [int],int; 
when runtime is launched, the size of output (var0) is 0, and the maximum size is 

limited by a concept predefined parameter outmax. APPEND appends the value of 

ACC to the output vector and increases its size by 1, unless in case of exceeding 

outmax, when error is reported instead. SAVI outputs ACC at position [int], the 1
st
 

parameter. If int is greater than the current size, the missing cells are padded with 

0’s. The last instruction saves the value of the 2
nd

 parameter rather than ACC. 

• ADDSAVI [int],A; ADDSAVX [idx],A; ADDSAV [int],int; 
the value of the indexed output cell is added to ACC/int, and placed in the cell. In 

case of an attempt to access a cell beyond the current size of the output, a fatal 
error is reported. Flags are set, accordingly. 

• MEMMOVI A,[int]; MEMMOVX A,[idx]; MEMSAVI [00],A; 
MEMSAVX [idx],A; MEMSAV [int],int; the local static memory is 

accessed. The same memory is shared by all runtimes of a given concept, and the 

conflicts – especially the overwrites – are not resolved. 

• INC A; DEC A; INC IDX; DEC IDX; add/sub 1 and set flags. 

• NEG A; ACC = –ACC. 



• DELAY A,varN; set ACC to the difference in milliseconds between the real 

times of creation of the executed runtime and the runtime pointed to by variable N. 

Applies to input/source variables only. 

• WAIT A; suspend execution for ACC milliseconds, go to SLEEP state. 

• SIZE A,varN; SIZE IDX,varN; load the register with the size of variable 

numbered by the 1
st
 parameter. 

• RAND A; set ACC with a random value (non-uniform distribution). 

• FLAGS A; FLAGS IDX; FLAGS varN[idx]; FLAGS varN[int]; 
set flags for the register or the cell. 

• MOVB varN,varM; MOVIB varN,vector; ADDB varN,varM; 
SUBB varN,varM; CMPB varN,varM; these are block instructions that 

operate on the whole variables rather than single cells. Writes to source variables 

are disabled. Conflicts of different size vectors are resolved, arithmetic operations 

set flags, vector is an inline encoded constant, with the first int cell containing the 

size, followed by a list of ints, e.g.: MOVIB var0,(02):0030,0020 

• RET; EXIT; return to the calling process with no fatal error; EXIT is a type of 

return that additionally resets the resources field. 

• CALL; LCALL; LRET; not utilized below, subject of join by INTEGRATE. 

• JMP ln; JZ ln; JNZ ln; JM ln; The ln stands for line number, 

encoded as the 1
st
 parameter, counted in bytes. First instruction is unconditional, 

the latter jump if ZERO is set, ZERO is not set, or if MINUS is set, respectively. 

 

The following is a sample program (instruction codes have size of 1 byte): 

 

0000 MOVI A,    0004  load ACC with constant “4”; 

0003 ADD A, var1[01] add the value of the 2
nd

 cell of 1
st
 input to ACC; 

0008 APPEND, A  output ACC, first time var0[0], then var0[1], etc.; 

0009 JNZ        0003 if the result of addition is not “0”, jump to ADD; 

0012 RET   finish execution; 

2.2   Sorting out useless code 

When the program generator (PG) receives a request to make a program, it is merely 

given the number of sources (inputs). It is the task of PG to decide on the maximum 

size of the output, size of local memory, number of lines, and the program code. As 

one might expect, the instructions and their parameters are chosen with a random 

select. Even if we restrict the maximum number of lines to 7, we get a space of 10^
12

 

combinations of code themselves, and more than 10^
20

 with even highly restricted 

parameter selection. A solution to that is to impose constraints and apply tricky 

heuristic rules. It must be emphasized, however, that it is not the role of PG to learn 

the most rewarding actions in the program space. The PG, on the other hand, should 

cover the program space uniformly, sorting out only those pieces of code that would 

be useless in an obvious way or cause a fatal error. Last but not the least, the PG 

doesn’t know much about the data it’s going to process. 



The current implementation restricts the number of sources to 3. A program with a 

single source, like number truncating or delaying a signal, is not very interesting at 

all. On the other hand, concepts processing more than 2 sources may be created by 

integrating two 2-source concepts. The PG assumes 75% probability for mandatory 

utilization of each passed source, where utilization means any reference to the source 

within the generated code. Though the exploitation routine requires that a runtime 

awaits all sources in the PENDING state, some sources may be treated as merely a 

binary trigger. The outmax value is set with the probability P(N) = (
1
/2)

N
, N>0. This 

assumption has further consequences. Preferred are programs with short outcomes, 

and 50% of them return a single int. Hence, the inputs are dominated by short 

arrays, as well, unless the learning would sort them out. Static local memory size is 

assumed to be equal to outmax. The minimum number of lines is 3, increased by 1 

with each mandatory source. A small bias towards longer programs is also added: 

rand() mod 3. Effectively, the following probability distribution is used (Fig. 1). 

 

 
 

Fig. 1. Program length probability distribution. 

 

As for constants used as parameters, we assume that whatever is interesting happens 

around zero, with a bias towards positive numbers. Powers of 2 and 10 are preferred. 

Fig. 2. depicts the probability distribution generated by a designated algorithm. 

 

 
 

Fig. 2. Constants probability distribution. 

 

Many obvious PG constraints come to mind immediately. These are e.g.: avoiding 

jumps to itself or jumps not to an instruction code, attempts to access data out of 

range, if the index and range are known. Below, we would discuss only more 

challenging heuristics, listing only a few of about 30 that have been applied. 

 



• Only a small subset of the listed above instructions would make sense as the first 

instruction on program entry (0000). Arithmetic operations, flag settings and jumps 

are useless, unless some data has been initialized first. Another policy governs the 

last instruction selection, which may be other than RET if RET was used before. 

• ACC/IDX should not be used, if not initialized first. One would ask, however, how 

would we know? A register may be initialized further in code, followed by a jump 

backward. It would involve and unconditional jump, however, that is forbidden in 

this context. A counterpart rule says that if a register has been set (possibly due a 

random selection of an instruction), it must be utilized in the following code. 

• Flags intentionally set must be utilized before the setting is overwritten by another 

setting. The FLAGS and CMP instructions set flags intentionally. In addition, ADD, 

SUB, INC and other instructions set flags ‘as a side effect’,  and that setting may 

or may not be utilized. An utilization is a conditional jump. If the flag setting was 

done intentionally, it must not be altered before applied at least once. 

• Restricted are jumps: to itself, to the next instruction, to the first instruction, a jump 

backward that is not followed by setting flags before the jump, a jump forward 

behind a RET instruction that is not to the instruction next after RET, unless other 

forward jump has already used that label. If we consider that a typical program 

contains less than 8 lines, the above rules become quite restrictive. One could 

possibly depict correct programs that would drop some of the above rules. They 

would however be merely equivalents of their simpler counterparts. 

• The program must output something somewhere, for otherwise it would be a 

closed world. Similarly, it is useless to perform any operations before RET, if not 

followed by a modification of the output, or at least the local static memory. 

• A more challenging question arises, if one asks what happens when the program is 

branching, or when two flows join? The PG maintains a status word for each 

branch. Statuses do split and join. Some rules, like utilization of a set register, 

perform alternative on a join, for it is sufficient that either branch utilizes a set 

register. As for the output setting requirement, the conjunction matters. 

• In some cases the algorithm gets to a point where no instruction matches the status 

word, and the whole PG procedure – called another pass – must be repeated.  

2.3   Hash pooling 

We want the PG to cover the program space evenly, but some programs become much 

too frequent. Keeping a record of all generated programs would be intractable. On the 

other hand, sooner or later, the PG will deliver all permutations for a given program 

size, and repetitions will be indispensable and desired. To solve this problem, the 

following hash pooling method is applied. 

An array of counters count[N] (now N=2^
14

) initialized to 0 is maintained. Each 

time a new program is created, an index h = hash(p) mod N is computed, where 

hash() is a non-cryptographic hash function; p is a program. Let T be the total 

number of programs already delivered. If count[h]>2*(T/N), the PG must be 

repeated, otherwise both T and count[h] are incremented, and the created program 

is delivered. As a result, no programs are more frequent than twice the average. 



3  Conclusions 

The untouched results of the PG algorithm may be downloaded from here: 

 
http://aginao.com/pub/pg1000samples.zip 

http://aginao.com/pub/pg100000samples.zip 

 

Many programs seem to be of limited applicability. Some loop infinitely, run out of 

memory range, contain useless pieces of code or code that could be rewritten more 

effectively. The results seem encouraging, however, and – compared to a naive 

random search – reduce the program space by several orders of magnitude. Not all 

defective samples would be useless, however. Let’s take the example: 
 

0000 MOVI A,    0025 

0003 CMP A, var1[00] 

0008 JZ         0003 

0011 APPEND, A 

0012 RET 

 

The program loops infinitely in case the var1[00] equals 25 – the case that in general 

is quite unlikely. It would run out of resources in a small percentage of cases, much 

too few to discard the program as useless. Otherwise, it would terminate and activate 

the linked concepts. Overall, it would behave like a conditional jump. 

On a 12-core Intel i7 CPU 3.33 GHz this algorithm generates 10^
6
 programs/sec. 

Possibly, no more than 1% of the cognitive engine processor’s time would be devoted 

to program generation. What remains is 10.000 programs/sec that would be evaluated 

by running them on the VM and sorting out further by the machine learning methods. 

Further improvements of the PG algorithm are possible. A change of the VM design 

and the instruction set is quite likely, as well. 
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