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Abstract. Behavioral self-programming is the ability for a system to
process a task without following a predetermined algorithm. This paper
introduces a new approach to do so in a reasoning system that is adaptive
to its environment and works with insufficient knowledge and resources.
This approach is compared with other existing approaches, and its special
nature is discussed.

1 Models of self-programming

From outside, an AI system can be described as interacting with its environment
by obtaining a sequence of percept as input, and producing a sequence of action
as output [22, 27]. The former is usually referred to as the system’s experience,
and the latter, its behavior. When the focus of the discussion is on the system’s
problem-solving capability, a subsequence of experience can be taken as a “prob-
lem”, and a subsequence of behavior as its “solution”. In this way, the system’s
life-long history can be seen as a sequence of problem-solving activities, which
may overlap with each other in time.

Formally, the system’s recognizable percepts can be represented as a finite
and constant set P, and its executable actions as a finite and constant set A.
The experience of the system, from the initial time 0 to the current time t, is
a sequence E = 〈p0, · · · , pt〉, where pi ∈ P for each i from 0 to t. Similarly, the
behavior of the system is sequence B = 〈a0, · · · , at〉, where ai ∈ A. A problem,
or stimulus, is a subsequence of E, S = 〈piS , · · · , pjS 〉 where 0 ≤ iS ≤ jS ≤ t,
and the system’s solution, or response, is a subsequence of B, R = 〈aiR , · · · , ajR〉
where 0 ≤ iR ≤ jR ≤ t.

In computer science, the above S-R relation is typically specified as a “com-
putation” or “function”, that is, a (usually deterministic) mapping from S (the
input) to R (the output), or R = F (S). This process is experience-independent,
in the sense that the same S will produce the same R, no matter when S appears
in E. In AI, however, we are interested in adaptive and creative systems, where
the occurrences of the same stimulus may trigger different responses, and usually
the latter responses are “better” than the earlier ones, since the system learns
from its experience. It is also desired for the system to make a proper response
for stimulus anticipated by neither the system itself nor its designer.

In this paper, the above task is called “behavioral self-programming”, because
the behavior 〈aiR , · · · , ajR〉 is programmed from actions by the system itself at
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run-time, rather than by its designer in advance. The notion of behavioral self-
programming is broad enough to include several existing AI techniques, such
as planning [1, 5, 8, 20], production system [2, 14], inductive logic programming
[18], genetic programming [13], behavior-based robotics [3, 6], and reinforcement
learning [11, 24].1 These techniques are based on different assumptions about the
system and its environment, and consequently, they are different in the following
major aspects of the self-programming process:

Knowledge representation: how to represent the system’s knowledge about
percepts and actions, that is, the relations among them with respect to the
system’s goals.

Knowledge generation: how to generate new knowledge from existing knowl-
edge and new experience, so to avoid explicit programming for each problem
by the designer.

Action selection: how to select a behavior among candidates when it is too
time-consuming and dangerous to actually test each of them.

In the following, a new approach, “behavioral self-programming by reason-
ing”, is introduced, and compared with the above techniques in these aspects.
This approach is used in NARS, a general-purpose intelligent reasoning system
[25, 26]. Since NARS has been introduced and discussed in many previous pub-
lications (most of which are available at the author’s website), this paper only
addresses the aspects of the system that are directly related to the behavioral
self-programming process.

2 Knowledge representation

NARS uses a term-oriented language for knowledge representation [26]. A term
names a concept within the system, and in its simplest form, a term is just an
atomic identifier. For complicated knowledge, a compound term can be formed
by a logical connector from simpler terms, where the connector comes from a
constant set, and the component terms come from the existing terms in the
system.

A statement is a special type of compound term that specifies a relation
from one component to another. The basic form of statement is an inheritance
statement “S → P”, where S is the subject term, P the predicate term, and “→”
the inheritance copula. Intuitively, it states that S is a specialization of P , and P
is a generalization of S. Many statements on other relations can be equivalently
rewritten as inheritance statements. For example, “There is a relation R among
A, B, and C” can be represented as “(×, A,B,C)→ R”, where the subject term
is a compound, representing a relation among the three terms in the given order,
and the statement says that the relation is a special case of R.

1 Since this “self-programming” happens at the behavioral level of the system, it is
not necessarily achieved by “modifying the system’s own source-code”, which would
happen at the implementational level the system — though that is possible, it is
often not the most reliable, feasible, and efficient approach for this task.
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Beside the inheritance copula, the similarity copula “↔” is used for symmet-
ric inheritance relation between two terms, and the implication copula “⇒” and
the equivalence copula “⇔” are used between two statements for “if-then” and
“if-and-only-if”, respectively. All other relations among terms are translated into
these four types of copula.

Given the assumption of insufficient knowledge, in NARS every empirical
statement is true to a degree. The truth-value of a statement has two factors in
it: a frequency in [0, 1] indicating the proportion of positive evidence among all
available evidence at the current time, and a confidence in (0, 1) indicating the
proportion of current evidence among all available evidence at a future moment,
after a constant amount of evidence comes.

In NARS, episodic knowledge is represented as events, which are statements
with time-dependent truth-values. The temporal information of an event is rep-
resented relatively with respect to another event, so the system can indicate
that event E happens before event F , or the two happen at the same time. An
operation is a special type of event that the system can make it happen, usually
by the running of a software or hardware. Therefore, the “actions” mentioned at
the beginning of the paper are all represented in NARS as operations. A goal is
another special type of event that the system desires to happen. Each goal has
a desire-value attached (which is a variant of truth-value mentioned above) to
indicate the extent to which the system wants the statement to become true.

To be a general-purpose system, NARS uses a “hands plus tools” model
for its operations. There is a small number of built-in operations, “the hands”,
that is directly recognized by the inference rules and mainly used to manage the
system’s internal activities. The system’s direct interaction with its environment
is carried out by a set of (optional) plug-in operations, “the tools”, that drives
the software and hardware of the host system in which NARS is embedded. In
this way, NARS can serve as a mind within different bodies, or an intelligent
operating system managing various application programs and devices.

From the existing built-in and plug-in operations, compound operations of
various type can be formed. The basic compounding structures include sequential
and parallel execution (using temporal orders among operations), conditional
execution (using the implication copula), and repetitive execution (using the
implication copula in recursion). In this way, a group of statements can serve
as a program, by given certain terms a procedural interpretation, as in logic
programming [12, 16].

In NARS the preconditions and effects of an (atomic or compound) operation
is represented by implication relations between it and other statements, rather
than as “states” in a model of the world [1]. Due to insufficient knowledge and
resources, the system usually neither knows all the preconditions and effects of
an operation, nor can it take all the known ones into consideration when making
each decision. Instead, only part of the conditions and/or effects of an operation
is considered and even known.

The “reactions” in reactive systems [6] can be represented in NARS as an
implication statement “S ⇒ R”, so that whenever the system gets stimulus S,
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it takes action R as response. In more complicated situations, the S-R relation
is conditional, which can be represented in NARS as “C ⇒ (S ⇒ R)”, or
equivalently, “(C ∧R)⇒ S”, where C is the condition. The same statement can
also represent the knowledge that an operation S can has consequence R under
condition C. Since in these statements C, S, and R can all be compound terms
with internal structures, this type of knowledge can represent complicated plans
to reach a complex goal [8]. In this way, what is taken to be opposite approaches
in robotics, reactive vs. deliberative [19], are unified in NARS.

Because statements (including events, operations, and goals as special cases)
can be related to each other by the copulas (inheritance, similarity, implica-
tion, and equivalence), in NARS the knowledge about percepts and actions is
represented hierarchically [1], rather than all reduced to direct relations from
percepts to actions (as in many planning and reinforcement learning systems).
For example, the plan to reach a certain goal can be represented as consisting
of three major steps, then each step is further specified as a subgoal that can be
reached by smaller steps, and so on, until the level of executable operations.

Similar ideas can be found in logic programs and production systems, though
the language of NARS is less restrictive. In a logic programming language like
Prolog, each “rule” must be a Horn clause, where the “body” of the rule implies
the “head”, which cannot have complicated internal structure. In a production
system, a “rule” only specifies the necessary condition for an action to be taken.
In NARS, on the contrary, a statement can represent other types of knowledge
about an action.

In decision-theoretic planning [4, 21] and reinforcement learning [11, 9], the
uncertainty in action consequences is usually represented as probability values.
This approach is not taken because in NARS the uncertainty in beliefs cannot
be assumed to be a (coherent and stationary) probability distribution [29].

In summary, in NARS declarative, episodic, and procedural knowledge are
represented and stored in a uniform format, as logical relations among state-
ments, where the truth-value of the statements is determined by available evi-
dence according to the same semantic theory. The formal grammar of the lan-
guage can be found in [26], as well as in on-line documents in the author’s
website.

3 Knowledge generation

In NARS, the simplest form of procedural knowledge is an implication statement
“S ⇒ P”, where one of the two terms is an operation. Such a belief can be
generated in several ways. It can be “implanted” into the system when the
operation is registered, as an “instinct” of the system. It can also be acquired
directly from the system’s experience after the operation comes into existence.
As a reasoning system, NARS derives most of its beliefs by itself, following a
predetermined set of inference rules.

As a term logic, a typical inference rule in NARS is syllogistic, that takes
two premises to derive a conclusion. The two premises contain a common term,
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and the conclusion is between the other two terms. When the copula involved is
implication, there are three basic inference rules:

deduction induction abduction
M ⇒ P 〈t1〉 M ⇒ P 〈t1〉 P ⇒M 〈t1〉
S ⇒M 〈t2〉 M ⇒ S 〈t2〉 S ⇒M 〈t2〉

—————— —————— ——————
S ⇒ P 〈Fded〉 S ⇒ P 〈Find〉 S ⇒ P 〈Fabd〉

When one term (M in induction, and S in the other two) is taken to mean
“whatever the system knows” and is implicitly represented, we get a group of
variants of the above rules, which is closer to how these three types of inference
are specified in the current AI research:

deduction induction abduction
M ⇒ P 〈t1〉 P 〈t1〉 P ⇒M 〈t1〉

M 〈t2〉 S 〈t2〉 M 〈t2〉
—————— —————— ——————

P 〈Fded〉 S ⇒ P 〈Find〉 P 〈Fabd〉

In each rule, t1 and t2 are the truth-values of the two premises, respectively.
The truth-value of the conclusion is calculated by the corresponding truth-value
function from truth-values of the premises. Though the truth-values in NARS
intuitively correspond to statistical information about the evidential support of
statements, they do not necessarily form a consistent probability distribution.
Instead, in each inference step, the truth-value calculation only considers “local
information” provided by the premises. This treatment is a direct consequence
of the insufficient knowledge and resources assumption [29].

The details of the truth-value functions have been discussed in [26] and many
other publications. Here we will only mention one property of them: in NARS
some inference rules are “strong”, and some others are “weak”. The confidence
of conclusions produced by the former takes 1.0 as upper bound, while that by
the latter has a much lower upper bound (0.5, in the current implementation);
if the truth-values are omitted and the rule is applied among binary statements,
the strong rules are still valid, while the weak rules are not. In the above table,
deduction is a strong rule, and the other two are weak. Here their difference is
in the confidence of the conclusions, rather than their frequency.

When applied to procedural knowledge, the above inference rules reveal the
condition and consequence of operations. For example, from knowledge “M is a
sufficient precondition of action P” (M ⇒ P ) and “S implies M” (S ⇒M), the
deduction rule generates “S is a sufficient precondition of action P” (S ⇒ P ).
From the observation that S is followed by P , the induction rule generalizes
the case into “S is a sufficient precondition of action P”, though with a low
confidence. From knowledge “M is an implication of event S” (S ⇒ M) and
“M is a consequence of action P” (P ⇒ M), the abduction rule proposes an
explanation “S is a sufficient precondition of action P” (S ⇒ P ), also with a
low confidence.
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When conclusions about the same statement are derived from different ev-
idence, the revision rule in NARS merges the evidence, and produces a more
confident conclusion. This is also how a wrong belief gets corrected. Since the
confidence of a statement never reaches its upper bound (1.0), all beliefs of the
system are revisable, including those that are implanted and input directly. Like
in statistical learning, in NARS a stable knowledge is usually not the result of
a single inference step, but depends on a large numbers of steps. Though some-
times a certain behavior can be traced back to a single belief or concept, more
often it comes from the cooperation of a large number of concepts and beliefs.

Beside the rules mentioned above, there are many other inference rules in
NARS, which are described in [26] and other publications. The above rules show
the principle followed by all of them: in its conclusion, each rule summarizes
the information in the premises, and the conclusion usually contains compound
terms not in the premises. When a derived conclusion corresponds to an existing
concept or belief, it will be merged into it, so as to contribute to its meaning
and/or truth-value, otherwise it will be a novel concept or belief in the whole sys-
tem. In general, all the expressible compound terms (including the statements)
can be generated by the system itself, usually in more than one way.

Consequently, in NARS “reasoning” and “learning” are two aspects of the
same process, which is also responsible for the generation of all the behaviors
of the system. As a reasoning system following a formal logic, every inference
step is justified according to the semantics of the system, which requires the
conclusion to be based on the evidence provided by the premises. Therefore,
unlike genetic programming [13], in NARS there is no pure-random factor in the
generation of new behaviors. On the other hand, since NARS is designed to be
adaptive, and to work with insufficient knowledge and resources, the conclusions
are summaries of the system’s experience, not theorems derived from a constant
set of axioms. Actually “NARS” is the acronym of “Non-Axiomatic Reasoning
System”.

NARS is tolerant of the uncertainty, incompleteness, and inconsistence in
knowledge. With the coming of new experience and the changing of the context,
the system adjusts its concepts and beliefs, which can be considered as various
types of learning. Similarly, various types of ways for the behaviors to be orga-
nized, such as reaction, conditioning, clustering, abstracting, planning, etc., are
all covered as special cases of the same reasoning/learning process, rather than
as following separate “learning algorithms” [17].

4 Action selection

At every moment, the actual behavior of NARS is produced by a selected subset
of its procedural knowledge (on the preconditions, effects, resemblance, compo-
sition, etc., of operations), and the selection is usually a combination of reactive
responses and goal-directed deliberations and decisions.

As mentioned previously, the system has some knowledge in the “stimulus-
response” from, which allows certain behavior to be directly triggered by the
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corresponding percepts. However, the majority of the procedural knowledge is
indirectly related to percepts, and the related beliefs link operations and goals
to concepts and beliefs that summarize the system’s experience in various ways.
It is this type of knowledge that allows the system’s behavior to depend not only
on the current situation, but also on the long-term goals of the system.

As mentioned previously, in NARS a “goal” is an event that the system de-
sires to happen, which is represented as a statement (a partial description of the
environment), rather than a state (a complete description of the environment).
All the initial goals in NARS come from its designer or tutor, and the system
produces derived goals from them according to the system’s beliefs.

For example, if the system believes an implication statement “S ⇒ P”, and
P is a goal that is actively pursued by the system, then by backward inference,
S becomes a candidate goal (since its realization provides a means to realize
P ), just like in many AI systems. However, what makes NARS different here is
that under the assumption of insufficient knowledge and resources, in the system
usually there are multiple goals coexist at any given moment, and these goals
may be inconsistent in what they described as desired, as well as competitive
with each other for the system’s resources.

To deal with this situation, in NARS each goal has a “desire-value” attached
to indicate the system’s preference, relative to other goals. Desire-value is defined
as a variation of truth-value. The desire-values of the initial goals are assigned
by the designer or tutor, and that of the derived goals are determined by the
truth-value functions when they are derived. When a goal gets different desire-
values from different sources, they are merged together by the revision rule, just
like the truth-values. For the above example, if S is recognized as leading to a
highly undesired consequence Q, it will not be taken as a way to achieve P .

When NARS makes decisions on what goals to actually pursue, it considers
both the desirability and the plausibility of each alternative, as in traditional
decision theory [10]. However, in NARS it is not assumed that the system knows
all the paths to reach a given goal, nor that its knowledge about each known
path is certain. Instead, the desirability and the plausibility of each alternative
need to be evaluated by the system itself through reasoning, according to its
experience and restricted by its available resources. Since the goals constantly
change, NARS is not guided by a fixed fitness function, utility measurement, or
reward signal. Instead, the evaluation of desirability and plausibility is context
dependent, and the result does not necessarily converge to a limit.

Beside desirability and plausibility, another factor in the selection process
is the simplicity of the candidates. Due to insufficient resources, NARS prefers
simple concepts and beliefs. The importance of an “Occum’s Razor” in learn-
ing is widely acknowledged, though in NARS it is a natural implication of the
assumption of insufficient knowledge and resources, rather than an independent
postulation by itself. Furthermore, simpler behaviors are not taken as necessarily
“more likely to be correct”, as assumed in Solomonoff induction [23]. In NARS,
the desirability, plausibility, and simplicity of an event are evaluated separately,
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though the final selection among alternative actions is usually a trade-off among
the three and some other factors.

As a reasoning system, the learning process in NARS is very different from
that governed by various “learning algorithms”, in terms of its resource con-
sumption. Since each inference step only considers the evidence in the premises,
it can be completed in a short constant time. A learning or problem-solving pro-
cess is usually carried out by a sequence of inference steps, but the selections of
the steps and the termination of the sequence are decisions made by the system
in run time, according to many factors.

For example, when the system looks for a path to achieve a goal, it will not
go through all known candidates, then pick the best one according to certain
criteria — since the goal may need to be achieved via derived goals, such an
exhaustive search usually leads to a combinatorial explosion. Instead, the system
selects candidates probabilistically, with the chance of each candidate determined
by its current priority value, which summarizes factors like quality (simplicity,
confidence, etc.), usefulness (past performance), relevance (to the most recent
experience), and so on.

Consequently, though there is no pure-random factor, the behavior of NARS
is still nondeterministic and context-sensitive, in the sense that the system’s
solution to a problem depends not only on the design of the system and the
problem to be solved, but also on the time when the problem is encountered
by the system. This “case by case” working mode [28] can handle novel cases
for which previous experience is not directly applicable, as well as to carry out
one-shot learning.

Therefore, how much time a problem-solving process takes is not a constant,
but varies from case to case, like in an anytime algorithm [7]. The response of
NARS to the combinatorial explosion problem is not to find an algorithm with
a polynomial growth order [15], but to get rid of the notion of “problem-specific
algorithm” from the start. For each problem (instance), the system simply deals
with it with the knowledge that happens to be recalled at the moment, and
explores as many possibilities as the current resource supply allows, rather than
continues until the solution satisfies a predetermined standard.

Working in this way, NARS no longer has the predictability and repeatability
of the conventional computational systems, but at the same time, it gains the
autonomy, flexibility, and adaptability we expected from intelligent systems. Like
it or not, this type of behavior is an inevitable consequence of “adaptation with
insufficient knowledge and resources”, the working definition of intelligence on
which NARS is based.

5 Conclusion

Under the length restriction, this paper cannot describe the technical details
of the behavioral self-programming in NARS. Even so, the above conceptual-
level description should be enough to show that this approach is different from
the others in its major features. The basic idea is to organize operations in an
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inheritance hierarchy (using inheritance ans similarity relations), and to specify
each operation with (partial) conditions and consequences (using implication
ans equivalence relations). When representing these relations, various types of
uncertainty (randomness, fuzziness, ignorance, inconsistency, etc.) are allowed.
The system uses the available knowledge to derive new knowledge, as well as
to select responses to the current and recent stimulus. Since the behaviors of
the system is experience-dependent and context-sensitive, the system “programs
itself”, in the sense that for a given problem, the system’s solution is not fully
determined by a given algorithm.

Though NARS is similar to the other behavioral self-programming approaches
here or there, as a whole it is not based on any of them. The differences mainly
come from the system’s commitment to adaptation with insufficient knowledge
and resources, which is not assumed in exactly the same sense by any of the other
approaches. Since NARS differs from the other theories in the assumptions on
the working environment, restrictions, and objectives of the system, technically
speaking it is designed for a problem not addressed by the others.

This environment-objective assumption is of special interest to AI, first be-
cause it is closer to the reality of human intelligence, as well as to the situations
where we hope AI systems to work. It can be argued that if a system has suffi-
cient knowledge and resources (with respect to the problems it needs to solve),
it can just execute the problem-specific algorithms, or do exhaustive search. It
needs “intelligence” only when it has no applicable and affordable algorithm to
follow in the problem-solving process.2

For AGI research, the NARS approach has special significance, because of
its general-purpose nature. The “hands plus tools” model introduced previously
allows a general-purpose reasoning system (a “mind”) to be equipped with cer-
tain (built-in) domain-independent operations (its “hands”), as well as (plug-in)
special-purpose operations (its “tools”). The knowledge and skills related to the
operations are partly given, but mostly learned by the system from its own ex-
perience. For such a system, it is neither necessary nor possible for its designer
to restrict the situations the system may run into and the problems it may en-
counter. Since NARS assumes much less on what the system knows and how
much time and space it can afford, it serves AGI research better than techniques
that can only be applied under certain strong assumptions.
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