
Anytime Bounded Rationality

Eric Nivel
1
, Kristinn R. Thórisson

1,2
, Bas Steunebrink

3
, and Jürgen Schmidhuber

3

1 Icelandic Institute for Intelligent Machines

2 Reykjavik University, CADIA

3 The Swiss AI Lab IDSIA, USI & SUPSI

Abstract. Dependable cyber-physical systems strive to deliver anticipative,

multi-objective performance anytime, facing deluges of inputs with varying and

limited resources. This is even more challenging for life-long learning rational

agents as they also have to contend with the varying and growing know-how

accumulated from experience. These issues are of crucial practical value, yet

have been only marginally and unsatisfactorily addressed in AGI research. We

present a value-driven computational model of anytime bounded rationality

robust to variations of both resources and knowledge. It leverages continually

learned knowledge to anticipate, revise and maintain concurrent courses of

action spanning over arbitrary time scales for execution anytime necessary.

1 Introduction

Key among the properties mission-critical systems call for is anytime control – the

capability of a controller to produce control inputs whenever necessary, despite the

lack of resources, trading quality for responsiveness [3,5]. Any practical AGI is

constrained by a mission, its own architecture, and limited resources including

insufficient time/memory to process all available inputs in order to achieve the full

extent of its goals when it matters. Moreover, unlike fully hand-crafted cyber-physical

systems, AGIs should handle underspecified dynamic environments, with no other

choice but to learn their know-how, possibly throughout their entire lifetime. The

challenge of anytime control thus becomes broader as, in addition to resource scarcity,

it must encompass inevitable variations of completeness, consistency, and accuracy of

the learned programs from which decisions are derived.

We address the requirement of delivering anticipative, multi-objective and anytime

performance from a varying body of knowledge. A system must anticipate its

environment for taking appropriate action – a controller that does not can only react

after the facts and "lag behind the plant". Predictions and sub-goals must be produced

concurrently: (a) since achieving goals needs predictions, the latter must be up to date;

(b) a complex environment’s state transitions can never be predicted entirely: the most

interesting ones are those that pertain to the achievements of the system’s goals, so

these must be up to date when predictions are generated. A system also needs to

achieve multiple concurrent goals to reach states that can only be obtained using

several independent yet temporally correlated and/or co-dependent courses of action

while anticipating and resolving potential conflicts in due time. The capabilities above

must be leveraged to compute and revise plans continually, as resources allow and

knowledge accumulates, and execute them whenever necessary, as situations unfold –

this requires subjecting a system's deliberations (and execution) to deadlines relative

to an external reference (world) clock.

Most of the strategies controlling the life-long learning AI systems we are aware of

are subject to one or several severe impediments to the responsiveness and robustness

we expect from mission- and time- critical systems. First, a sequential perception-

decision-action cycle [1,6,7,8,12] limits drastically the potential for situational

awareness and responsiveness: such "cognitive cycles" are difficult to interrupt and,

being driven by subjective inference "steps", are decoupled from objective deadlines

either imposed or learned. Second, interleaving multiple trains of inference in one

sequential stream [1,4,6,7] results in the overall system latency adding up with the

number of inputs and tasks at hand: such a system will increasingly and irremediably

lag behind the world. Third, axiomatic reasoning [1,6,7] prevents the revision of

inferences upon the acquisition of further amounts of evidence and know-how,

prohibiting continual refinements and corrections. Last, the lack of explicit temporal

inference capabilities [1,6,7,8] prevents learned procedural knowledge from inferring

deadlines for goals and predictions, which is needed to plan over arbitrary time

horizons – on that front, state-of-the-art reinforcement and evolutionary learners

[9,13,2] present other inherent difficulties. NARS [14] notably avoids these pitfalls

and could, in principle, learn to couple subjective time semantics to a reference clock

and feed them to a probabilistic scheduler. We set out instead to schedule inferences

deterministically using objective time semantics so as to avoid the unpredictability

and unreliability that inevitably arise from using inferred time semantics to control the

inferencing process itself.

We present a computational model of anytime bounded rationality (we refer to this

model as ABR) that overcomes the limitations above. It posits (a) a dynamic hierarchy

of revisable time-aware programs (called models) (b) exploited by concurrent

inferencing jobs, that are (c) continually re-scheduled by (d) a value-driven executive

under (e) bounded latencies, keeping the size of all data (inputs, inferences, programs

and jobs) within (f) a fixed memory budget. This model has been implemented and

tested: it constitutes the control core of our auto-catalytic, endogenous, reflective

architecture (AERA; [10]), demonstrated to learn (by observation) to conduct

multimodal interviews of humans in real-time, bootstrapped by a minimal seed [11].

While the learning algorithm of this system has been described in prior publications

[10,11], its control strategy, the ABR model, has not been published elsewhere.

2 Overview of ABR Control

Our anytime bounded rationality model (ABR) assumes (Fig. 1) an executive (in

black), a memory (dashed areas) and a set of I/O devices (dedicated external sub-

systems). Programs include monitors (to assess the outcomes of goals and predictions)

and models
1
. Models are either hand-crafted or learned from experience, and present

1 Other programs construct new models from life-long experience, see [10] for details.

varying degrees of consistency, accuracy, and reliability. Jobs are requests for

processing one input by one program and are exe-

cuted by a pool of threads; as a result of job execu-

tion, new inputs and programs are added to the

system, other programs are deleted and some in-

puts cancelled. ABR is data-driven: a writer (W)

creates new jobs upon matching inputs to pro-

grams while an antagonist eraser (E) enforces a

forgetting strategy to limit memory usage. Inputs

consist of sensory inputs, reflective inputs (traces

of model execution, see section 3), inferences and

drives (drives are user-defined top-level goals and

constraints). Outputs are commands executed

asynchronously by the I/O devices: these respond

with efference copies (considered sensory inputs)

telling the system what has actually been executed (and when), as opposed to what

was intended, thus allowing it to learn (i.e. to model) the devices' behaviors.

Models produce revisable inferences in two modes, forward chaining (predictions)

and backward chaining (sub-goals). Both are performed concurrently – a model can

produce several predictions from several different inputs while at the same time

producing several sub-goals from several other goals (section 3). Motivated by drives,

a hierarchy of models produces concurrent overlapping cascades of simulated sub-

goals – at the bottom of a cascade, terminal goals embed commands to I/O devices,

executed when such goals are committed to. Goal cascades simulate alternate courses

of actions to achieve multiple (possibly) concurrent goals. These projected plans are

continually re-evaluated upon knowledge updates (addition/deletion of inputs,

inferences and models), and maintained for execution anytime it matters: continually

anticipating the expiration of simulated goals' deadlines, a system is pressed to

commit to these goals (and their ancestors), comparing their value (and their

ancestors') to that of other conflicting or redundant goals in order to enact the best

actions planned so far. In parallel to these top-down simulations, the model hierarchy

is traversed by bottom-up concurrent overlapping flows of predictions originating

from I/O device readouts. These warn the system of the predictable success or failure

of its goals, and prompt it to adapt its behavior anticipatively by considering alternate

goals, producing new ones and/or increasing or decreasing the importance of existing

ones, possibly downplaying some (section 4).

Jobs are assigned a priority that determines the time when they may be executed.

Priorities are continually updated, thus allowing, at any time, high-value new jobs to

get executed before less important old jobs, and old jobs to become more valuable

than newer ones based on new evidence. Jobs of lesser priority may get delayed

repeatedly and eventually cancelled, as is likely to happen when the system is

overloaded. A job priority depends on the continual assessment of the relevance of the

program and the tending value of the input (see below). Threads recompute priorities,

delete jobs that have become irrelevant and pick the best jobs for execution. Such

scheduling overhead is bounded by a constant – a thread only updates the priorities of

Fig. 1

an ever-changing (fixed size) subset of the jobs
2

. All execution times are

commensurate: memory usage is proactively limited (see below), and the threads', E's

and W's worst-case execution times (WCET) are all identical and constant.

Assuming the life-long learning of new models and a sustained influx of inputs, the

number of jobs and input-to-program matching attempts can grow exponentially and

exceed the memory budget. This growth is limited by a forgetting strategy based on

the prediction of the amount of available memory, inferred, conservatively, from past

experience – essentially, the rates of data creation and deletion (inputs, inferences,

programs and jobs). Should E anticipate a shortage, it deletes the necessary number of

data in order to accommodate the next predicted influx while preserving the most

valuable existing data: the top-rated candidates for deletion are the inputs that

contributed the least recently to the achievement of goals, the least reliable models

that succeeded the least recently, and the jobs of the least priority.

A system’s experience constitutes defeasible knowledge, and is thus represented

using a non-axiomatic temporal term logic, truth being neither eternal nor absolute. A

term exposes three components: (a) arbitrary data, (b) a time interval ([early deadline,

late deadline] in microseconds, world time) within which the data is believed to hold

(or, if negated, during which it is believed not to hold) – an inference's lifetime being

bounded by its late deadline – and, (c) a likelihood (in [0,1]), the degree to which the

data has been ascertained. The likelihood of a sensory/reflective input is one whereas

that of a drive is user-defined. An inference results from the processing of evidences

by chains of models
3
, and is defeated or vindicated upon further (counter-)evidences.

Its likelihood is continually revised depending on the context and reliability of said

models and, notably, decreases with the length of the chains (see next section).

The value of tending to an input (sensory/reflective input, inference or drive) at

time depends on both its urgency (for situational awareness) and likelihood:

𝑈𝑟𝑔𝑒𝑛𝑐𝑦(,) = 1 −
𝑇𝐻𝑍(,)

𝑀𝑎 𝑖(𝑇𝐻𝑍(𝑖 ,)) + 𝑈

𝑇𝑒𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(,) = 𝑈𝑟𝑔𝑒𝑛𝑐𝑦(,) × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(,)

where 𝑇𝐻𝑍 = 𝑀𝑎 (𝐿𝐷() − , 0) stands for “time horizon”, 𝐿𝐷 for "late deadline", 𝑖

being all the inputs in the system and 𝑈 a system parameter meant to keep urgencies

positive. Now, a goal may be achieved by other means than spending effort deriving

sub-goals from it (e.g. when the environment is cooperative). The value of pursuing a

goal thus decreases with the most likely prediction of its target state:

𝑃(,) = 𝑀𝑎 𝑖(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝𝑖 ,)),

𝐸𝑓𝑓𝑜𝑟 (,) = {
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(,), 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(,) ≥ 𝑃(,)

1 − 𝑃(,), 𝑜 ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇𝑒𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(,) = 𝑈𝑟𝑔𝑒𝑛𝑐𝑦(,) × 𝐸𝑓𝑓𝑜𝑟 (,)

2 Details on the scheduling algorithm are outside the scope of this paper.
3 Different chains may produce several equivalent inferences, albeit with different likelihoods.

Threads will execute first the jobs performing the most likely of these inferences, postponing

or discarding the others.

where 𝑝𝑖 are the predictions of ’s target state. The global relevance of a model 𝑚 is

the (normalized) maximum of the tending values of all its inferences 𝑖(𝑇,𝑚) of type 𝑇

(Predictions or Goals) that are still alive at time :

𝑈𝑅(𝑚, 𝑇,) = Max
𝑖
(𝑇𝑒𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(𝑖(𝑇,𝑚),)) , 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑚, 𝑇,) =

𝑈𝑅(𝑚, 𝑇,)

𝑀𝑎 𝑖(𝑈𝑅(𝑚𝑖 , 𝑇,))

where 𝑚𝑖 are the models in the system. If none of the 𝑖(𝑇,𝑚) are alive, then 𝑚 's

relevance is computed as
𝑀𝑖𝑛𝑖(𝑈𝑅(𝑚𝑖,𝑇,𝑡))

𝑀𝑎𝑥𝑖(𝑈𝑅(𝑚𝑖,𝑇,𝑡))
, giving it a chance to execute, albeit with a

minimal relative priority. Finally, the priority of a chaining job is the product of the

relevance of the model 𝑚 and the tending value of the input :

𝑃𝑟𝑖𝑜𝑟𝑖 𝑦𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛𝑖𝑛𝑔(,𝑚,) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑚, 𝐺𝑜𝑎𝑙𝑠,) × 𝑇𝑒𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(,)

𝑃𝑟𝑖𝑜𝑟𝑖 𝑦𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛𝑖𝑛𝑔(,𝑚,) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑚,𝑃𝑟𝑒𝑑𝑖𝑐 𝑖𝑜𝑛𝑠,) × 𝑇𝑒𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(,)

Prediction and goal monitoring jobs enjoy the same priority as, respectively, forward

and backward chaining jobs.

3 Models

Models are variable defeasible knowledge: experimental evidences trigger both their

construction, deletion, and the continual revision [10], of their predictive performance:

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖 𝑦(𝑚,) =
𝑒+(𝑚,)

𝑒(𝑚,) + 1

where 𝑒+(𝑚,) is the number of successful predictions produced until any time by a

model 𝑚 , and 𝑒(𝑚,) the total number of predictions, both updated by prediction

monitors each time a prediction fails or succeeds.

A model M (Fig. 2a) specifies a conjectured causal

relationship between a left-hand term (LT) and a right-

hand term (RT), i.e. patterns (A and B) featuring variables

(X, Y and Z). When a sensory (or reflective) input or

prediction a matches A (2b), M produces a prediction b,

patterned after B where variables are bound to values

assigned to variables shared by A or calculated as (learned)

functions of values in A (fwd, embedded in the model) – in

particular, time intervals are inferred this way. The

forward execution of M (predicting an instance of the

causal relationship) is reflected by a model instance term

(i), interpreted as a prediction of M's success (see rationale below). For each

prediction, a new program, a prediction monitor (PM(b)), is created to assess its

outcome. When a goal b matches B (2c), a sub-goal a is produced, patterned after A

whose variables are bound to values shared by B or calculated as functions of values in

B (bwd, also learned and embedded in the model). For each sub-goal, a new program, a

goal monitor (GM(a)), is created to assess its outcome. Alternatively, when a

sensory/reflective input matches a model's RT, an assumption, patterned after its LT, is

Fig. 2

produced, given that no corresponding input already matched said LT
4
. The likelihood,

at any time , of an inference 𝑦 produced by a model 𝑚 from an input is:

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑦,) = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(,) × 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖 𝑦(𝑚,)

Note that the model instance i, being a prediction of M's success, is assigned a

likelihood equal to that of the prediction b.

Models form hierarchical structures: when a model M1 features an instance of a

model M0 as its LT (e.g. iM0(…)), it specifies a post-condition on the execution of M0,

predicting some outcome upon the successful execution of M0, regardless of its

premises; conversely, when M1 features an instance of M0 as its RT, it specifies a positive

pre-condition on M0, predicting the success of M0 upon the occurrence of some premise.

Pre-conditions can also be negative, to predict failures: in this case, the RT is of the

form |iM0(…), '|' indicating failure. Pre-conditions influence the computation of the

likelihood of predictions (see below) but have no impact on that of goals.

A model is called conjunctive (Fig. 3a) when it specifies a causal relationship

whereby an effect is not entailed by one single term,

but by a context, i.e. a set of temporally correlated

positive pre-conditions (* denotes an unbound

value). A conjunctive model has no LT: instead, for

unification, a parameter list ((X)) gathers all the

variables shared by positive pre-conditions unless

already present in the RT (B(Y Z)). A conjunctive

model updates predictions as amounts of (value-

sharing) positive pre-conditions accumulate. Over

time , the likelihood of a prediction 𝑝 produced by

a conjunctive model 𝑚 increases with the

conjunction of positive pre-conditions weighted by

their reliability, and decreases with the most likely

of the negative ones:

𝑃𝑜𝑠𝐿(𝑚,) =
∑ (𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝𝑚𝑖

,) × 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖 𝑦(𝑚𝑖 ,))𝑖

∑ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖 𝑦(𝑚𝑘 ,)𝑘

 𝑁𝑒𝑔𝐿(𝑚,) = 𝑀𝑎 𝑗(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝𝑚𝑗
,))

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝,) = 𝑃𝑜𝑠𝐿(𝑚,) × (1 − 𝑁𝑒𝑔𝐿(𝑚,))

where 𝑚𝑖 are the pre-conditions on 𝑚 that predicted

𝑚's success (𝑝𝑚𝑖
), 𝑚𝑘 all the positive pre-conditions

on 𝑚, and 𝑝𝑚𝑗
, 𝑚's predicted failures. Positive pre-

conditions without which the effect of the model is

reliably entailed are deemed irrelevant: prediction

monitors will repeatedly decrease their reliability

until deletion. When presented with a goal, M0

outputs a sub-goal (iM0(y z)) targeting its own

(forward) operation – this sub-goal will match the

4 Assumptions are not essential for the present discussion and will not be detailed further.

 Fig. 3

Pre-conditions can be subjected to

any others recursively instantiating

the pictured hierarchical patterns.

Logical operations are continuous

and persistent instead of discrete

and transient: ANDs are weighted

and compete (as well as ORs) with

NORs based on the likelihoods of

pre-conditions, continually updated

to reflect knowledge variations,

that are both quantitative

(likelihood- and reliability-wise)

and qualitative (new inputs,

inferences and models, deletion of

underperforming models, unlikely

inferences and valueless old

inputs).

RT of its pre-conditions and trigger the production of their respective sub-goals (or

negations thereof in the case of negative pre-conditions).

A model is called disjunctive (Fig. 3b) when it specifies a causal relationship

whereby an effect is entailed by the occurrence of the most likely positive pre-

condition, competing with the most likely negative one. Positive pre-conditions on a

disjunctive model constitute a set of options to entail the models' success – whereas in

conjunctive models they constitute a set of (weighted) requirements. The likelihood of

a prediction is computed as for conjunctive models, except for its 𝑃𝑜𝑠𝐿 component:

𝑃𝑜𝑠𝐿(𝑚,) = 𝑀𝑎 𝑖(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑝𝑚𝑖
,))

Fig. 4 shows part
5
 of an actual system (called S1; [10]) that observed (in real-time)

human interactions of the general form "take a [color] [shape], put it there [pointing at

some location], thank you" (and variations thereof) and learned how to satisfy its

mission – hearing/speaking "thank you", depending on the assigned role (interviewee

or interviewer). S1's seed contains (a) a drive run, (b) a model S0 and its context {S1,

S2}, (c) sensors monitoring the state of hands, objects and utterances (color (col),

position (pos), attachment (att), shape (is), belonging (bel), designation (point),

speech (speak)) and, (d) effectors (commands move, grab, release, speak and point).

 Fig. 4. Example learned model hierarchy (seed models in black).

Models M3, M6, M20, M21 and M23 predict the consequences of issuing commands to end-

effectors – they were learned by observing the results of a few randomly generated

5 For clarity, timings and variants of learned knowledge (e.g. variations in wording, shapes and

colors) are omitted. Faulty models are also omitted (see section 5).

commands ("motor babbling"). A conjunctive model specifies how a state (its RT)

comes to happen when a context (white areas), i.e. a temporal correlation of pre-

conditions, is observed. For example, M12 predicts that an object X will move when an

actor B has taken it, followed by an actor A asking B to put it at a designated location. A

disjunctive model subjects the occurrence of its RT state to the observation of one pre-

condition among a set of options. For example, M5 predicts that an object X will be

attached to a hand H (RT of M5) in two cases: either S1grabs the object as per model M6,

or an actor (A) asks another one (B) to take the object, as per model M11. The disjunctive

model M14 specifies how hearing "thank you" is entailed by an actor A asking an actor B

to pick an object and drop it to a designated location (chain iM15–iM13–iM12–iM11). When a

model features a LT, it specifies the transformation of one state (its LT) into another

(its RT). Such transformations can also be controlled by pre-conditions, as for

disjunctive models. For example, M9 predicts the transition of the state "an actor holds

an object X" to "X no longer held" when S1 releases the object (M10), or when the actor

is asked to drop the object somewhere (M13). In this case, the LT has to be matched for

the model to sub-goal and conversely, both the LT and one pre-condition must be

observed for the model to predict. Models Ci are conjunctive models without an RT.

They represent abstractions of sub-contexts that have been reliably identified among

larger ones (those controlling conjunctive models). Occurrences of sub-contexts are

encoded as model instances (iCi) and are not subjected to any negative pre-conditions.

4 Continual Simulation & Anytime Commitment

An ABR-compliant system is multi-objective: as much as resources allow, it runs

“what if” scenarios to predict the impact of the hypothetical achievement of some

goals on that of other goals, anticipating conflicts and redundancies so as to commit to

the best goals so far, downplaying other contenders. For each goal, a goal monitor

accumulates evidences and counter-evidences of the desired state and, at the goal's

late deadline, declares either a success or failure, based on the evidence (and counter-

evidence) holding the greatest likelihood value – its sub-goals are cancelled and so are

the corresponding chaining and monitoring jobs. A goal is either simulated (the

default) or actual (defeasibly committed to). For each simulated goal, a corresponding

simulated prediction is produced, used by goal monitors to evaluate the consequences

of reaching the goal in question. Fig. 5 shows two simulation branches stemming from

two actual goals (g0 and g5). The simulated achievements (grey arrows) of simulated

goals (marked 's') are accumulated

by the monitors of actual goals

(5a). From these predictions, said

monitors assess the impact

(success or failure) of the

simulated goals on their own goals

(5b); such predicted impacts (grey

dashed arrows) are in turn

accumulated by the monitors of

simulated goals. At the earliest of the early deadlines of the goals in a branch (say g4's

Fig. 5. Concurrent simulations and commitment.

for g0's branch), a request for commitment is sent upward (5c) to the first simulated

goal in the branch (g1). Requests are granted depending on the predicted impact of a

goal candidate (g1) on actual goals (g5): if g1 entails no failure of g5, then commit to g1;

otherwise (there is a conflict between g1 and g5), if g5 is of less importance
6
 than g0,

then commit to g1 and all its sub-goals in the branch
7
; otherwise do nothing –

assuming the same knowledge, the system will commit to g6 later, following the same

procedure. Commitment to g1 is declined in case g0 is redundant with a more

important actual goal (targeting the same state).

Commitment is defeasible, i.e. continually revised as new knowledge (inputs,

inferences and models) impact both goals' importance and tending value: after

commitment, a goal monitor keeps accumulating predictions to anticipate further

conflicts and redundancies that could invalidate its decision, in which case the goal

(and its sub-goals) will become simulated again. When the system commits to a goal

(g1) conflicting with another one (g5), it keeps simulating g5 instead of deleting it, in

the hope of witnessing its unexpected success, triggering the acquisition of new

(possibly better) models. A system may also acquire better knowledge before g5's

deadline and uncover situations where it can be achieved without conflict – the system

may then commit to some of g5's sub-goals (e.g. g6) without having to re-compute the

simulation branches. For the same reasons, goals deemed redundant with more

important ones are also kept in the simulated state.

5 Results & Conclusion

We tasked a version of our AERA architecture, S1 [10], implementing ABR, (S1; [10])

with learning to conduct natural multimodal interviews with humans. S1 learned how

to do this by observing humans; an overview of the results is given in [11] from the

perspective of learning. From the perspective of control, S1 learned true multi-

objective control, coordinating consistently object manipulation, looking, nodding,

pointing, listening and speaking. Anticipative planning over arbitrary time scales was

demonstrated by S1 (a) taking turns in the interaction appropriately and in due time,

(b) planning questions depending on both the interviewee's answers and time available

and, (c) interrupting a talkative interviewee early in the interview to meet an imposed

deadline. On the last point, pressed by this deadline, S1 planned and executed com-

munication acts in a timely fashion, demonstrating anytime responsivity that was con-

strained by the timing of the humans' behaviors: interactions unfolded naturally, pre-

senting no differences in either latencies or meaning with respect to baseline human-

human interactions. S1's anytime adaptive behavior resulted from the continual de-

velopment of goal simulations, regulated by concurrent and timely predictions of the

humans' attention and intentions, hinted at by sequences of speech and gestures, in

both form and content, over various time scales, from word and sentence utterance, to

object manipulation, up to the interview's full length, thus allowing S1 to continually

6 A goal's importance quantifies the need to reach its target state, not the need to spend effort

reaching it, as factored in the goal's tending value. Accordingly, a goal's importance ignores

predictions of the target state and is the product of the sole goal's urgency and likelihood.
7 When a terminal goal is committed to, its command is executed by the appropriate I/O device.

reorder questions in the long term and anticipate deadline misses.

In conclusion, our model of anytime bounded rationality addresses several im-

portant issues for achieving mission-critical control in AGI-aspiring systems. It abol-

ishes the standard cognitive cycle, and posits instead value-driven parallel competitive

inferencing. Our implemented system demonstrably achieves multi-objective, antici-

patory and anytime performance, under varying knowledge and resources.

Acknowledgments. This work has been partly supported by the EU-funded projects

HUMANOBS (FP7-STREP-231453) and Nascence (FP7-ICT-317662), grants from

SNF (#200020-156682) and Rannis, Iceland (#093020012).

References

1. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated

theory of the mind. Psychological Review 111, 1036-1060 (2004)

2. Bellas, F., Duro, R.J., Faiña, A., Souto, D.: Multilevel darwinist brain (MDB): Artificial

evolution in a cognitive architecture for real robots. IEEE Transactions on Autonomous

Mental Development 2(4), 340-354 (2010)

3. Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in timeconstrained

environments. Artificial Intelligence 67(2), 245-285 (1994)

4. Cassimatis, N., Bignoli, P., Bugajska, M., Dugas, S., Kurup, U., Murugesan, A., Bello, P.:

An architecture for adaptive algorithmic hybrids. IEEE Transactions on Systems, Man, and

Cybernetics, Part B 40(3), 903-914 (2010)

5. Horvitz, E., Rutledge, G.: Time-dependent utility and action under uncertainty. In: Proc.

7th Conference on Uncertainty in Artificial Intelligence. pp. 151-158. Morgan Kaufmann

Publishers Inc. (1991)

6. Laird, J.E.: The Soar cognitive architecture. MIT Press (2012)

7. Langley, P., Choi, D., Rogers, S.: Interleaving learning, problem-solving, and execution in

the ICARUS architecture. Technical report, Computational Learning Laboratory, CSLI,

Stanford University (2005)

8. Madl, T., Baars, B.J., Franklin, S.: The timing of the cognitive cycle. PloS ONE 6(4),

e14803 (2011)

9. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmil-

ler, M.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)

10. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodríguez, M.,

Hernández, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A.:

Bounded Seed-AGI. In: Proc. 7th Conference on Artificial General Intelligence, pp. 85-96.

Springer, Quebec City, Canada (2014)

11. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M.,

Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A., Jons-

son, G.K.: Autonomous acquisition of natural language. In: Proc. IADIS International

Conference on Intelligent Systems & Agents 2014, pp. 58-66 (2014)

12. Shapiro, S.C., Ismail, H.O.: Anchoring in a grounded layered architecture with integrated

reasoning. Robotics and Autonomous Systems 43(2-3), 97-108 (2003)

13. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approxima-

tion. Journal of Artificial Intelligence Research 40(1), 95-142 (2011)

14. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer (2006)

