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Abstract. Four principal features of autonomous control systems are left both unad-
dressed and unaddressable by present-day engineering methodologies: (1) The ability
to operate effectively in environments that are only partially known beforehand at de-
sign time; (2) A level of generality that allows a system to re-assess and re-define
the fulfillment of its mission in light of unexpected constraints or other unforeseen
changes in the environment; (3) The ability to operate effectively in environments of
significant complexity; and (4) The ability to degrade gracefully—how it can continue
striving to achieve its main goals when resources become scarce, or in light of other
expected or unexpected constraining factors that impede its progress. We describe new
methodological and engineering principles for addressing these shortcomings, that we
have used to design a machine that becomes increasingly better at behaving in under-
specified circumstances, in a goal-directed way, on the job, by modeling itself and its
environment as experience accumulates. The work provides an architectural blueprint
for constructing systems with high levels of operational autonomy in underspecified
circumstances, starting from only a small amount of designer-specified code—a seed.
Using value-driven dynamic priority scheduling to control the parallel execution of a
vast number of lines of reasoning, the system accumulates increasingly useful models
of its experience, resulting in recursive self-improvement that can be autonomously
sustained after the machine leaves the lab, within the boundaries imposed by its de-
signers. A prototype system named AERA has been implemented and demonstrated
to learn a complex real-world task—real-time multimodal dialogue with humans—by
on-line observation. Our work presents solutions to several challenges that must be
solved for achieving artificial general intelligence.

1 Introduction

Our objective is to design control architectures for autonomous systems meant ultimately
to control machinery (like for example robots, power grids, cars, plants, etc.). All physical
systems have limited resources, and the ones we intend to build are no exception: they
have limited computing power, limited memory, and limited time to fulfill their mission. All
physical systems also have limited knowledge about their environment and the tasks they
have to perform for accomplishing their mission. Wang [3] merged these two assumptions
into one, called AIKR—the assumption of insufficient knowledge and resources—which
then forms the basis of his working definition of intelligence: “To adapt with insufficient
knowledge and limited resources.” We have adopted this definition as one of the anchors
of our work, being much in line with Simon’s concept of “bounded rationality” [4]. This
perspective means that we cannot expect any optimal behaviors from our systems since
their behaviors will always be constrained by the amount and reliability of knowledge they
can accumulate at any particular point in time. In other words we can only expect from these
systems their displaying of a best effort strategy.



The freedom of action entailed by high levels of autonomy is balanced by hard con-
straints. First, an autonomous system, to be of any value, is functionally bounded by its
mission, which imposes not only the requirements the system has to meet, but also the con-
straints it has to respect. Second, to keep the system operating within its functional bound-
aries, one has to ensure that some parts of the system will never be rewritten autonomously—
for example, the management of motivations shall be excluded from rewriting as this would
possibly allow the transgression of the constraints imposed by the designers. In that sense,
the system is also bounded, operationally, by its own architecture. Last, any implemented
system is naturally bounded by the resources (CPU, time, memory, inputs) and knowledge
at its disposal. For these reasons, autonomy, as we refer to it, shall therefore be understood
as bounded autonomy.

Representing time at several temporal scales, from the smallest levels of individual op-
erations (e.g., producing a prediction) to a collective operation (e.g., achieving a mission)
is an essential requirement for a system that must (a) perform in the real world and (b)
model its own operation with regards to its expenditure of resources (as these include time).
Considering time values as intervals allows encoding the variable precisions and accuracies
needed to deal with the real world. For example, sensors do not always perform at fixed
frame rates and so modeling their operation may be critical to ensure reliable operation of
their controllers and models that depend on their input. Also, the precision for goals and
predictions may vary considerably depending on both their time horizons and semantics.
Last, since acquired knowledge can never be certain, one can assume that “truth”–asserting
that a particular fact holds—can only be established for some limited time, and for varying
degrees of temporal uncertainty.

We target systems that operate continuously in non-resettable environments. We envi-
sion learning to be “always on” and inherent in the system’s core operation. Due to the
complexity of the environment and the unforeseeable nature of future events and tasks for
the system, we expect not only that pre-programming of all required operational knowledge
will be impossible, but that even pre-programming of substantial amounts of knowledge
will be too costly. Therefore the system will need to grow autonomously from a small seed,
containing its “drives” (i.e., mission goals and constraints) and a relatively small amount of
knowledge to bootstrap learning.

Unfortunately, none of the methodologies available in the AI or CS literature are directly
applicable for designing systems of this nature. For this reason we have advocated what
we call a constructivist AI methodology (CAIM; [5–9]). In the main, our constructivist
approach has two key objectives: (a) to achieve bounded recursive self-improvement [1]
and generality and, (b) to uncover the principles for—and to actually build—systems that,
given a small set of seed information, manage the bulk of the bootstrapping work on their
own, in environments and on tasks that may be new and unfamiliar.

The rest of this paper describes AERA [1]: its design principles (sec. 2) to match the
reality described above, its core operation (sec. 3), its methods of acquiring and representing
knowledge and skills (sec. 4), and the first experimental results (sec. 5).

2 Design Principles

As we cannot assume guarantees for system down-time (after all, we are targeting high
levels of operational autonomy), all activities of the system, from low-level (for example,
prediction, sub-goaling) to high-level (like learning and planning), must be performed in
real-time, concurrently, and continuously. Moreover, we need these activities to be executed
in a way that is flexible enough to allow the system to dynamically (re-)allocate its resources
depending on the urgency of the situation it faces at any point in time (with regards to its own



goals and constraints), based on the availability of these same resources, over which it may
not have complete (or any) control. The approach we chose is to break all activities down
into fine-grained elementary reasoning processes that are commensurable both in terms of
execution time and scheduling. These reasoning processes are the execution of various kinds
of inference programs, and they represent the bulk of the computing. These programs are
expected to be numerous and this calls for an architecture capable of handling massive
amounts of parallel jobs.

A running AERA system faces three main challenges: (1) To update and revise its
knowledge based on its experience, (2) to cope with its resource limitation while making
decisions to satisfy its drives, and (3) to focus its attention on the most important inputs, dis-
carding the rest or saving them for later processing. These three challenges are commonly
addressed by, respectively, learning, planning, and controlling the attention of the system.
Notice that all of these activities have an associated cost, have to be carried out concurrently,
and must fit into the resource- and knowledge budget the system has at its disposal. That
is the reason why they have been designed to result from the fine-grained interoperation of
a multitude of lower-level jobs, the ordering of which is enforced by a scheduling strategy.
This strategy has been designed to get the maximal global value for the system from the
available inputs, knowledge, and resources, given (potentially conflicting) necessities.

We emphasize that AERA has no sub-components called “learning” or “planner” and
so on. Instead, learning, planning, and attention are emergent processes that result from the
same set of low-level processes: These are essentially the parallel execution of fine-grained
jobs and are thus reusable and shared system-wide, collectively implementing functions that
span across the entire scope of the system’s operation in its environment. High-level pro-
cesses (like planning and learning) influence each other: For example, learning better mod-
els and sequences thereof improves planning; reciprocally, having good plans also means
that a system will direct its attention to more (goal-)relevant states, and this means in turn
that learning is more likely to be focused on changes that impact the system’s mission, pos-
sibly increasing its chances of success. These high-level processes are dynamically coupled,
as they both result from the execution of the same knowledge.

A system must know what it is doing, when, and at what cost. Enforcing the production
of explicit traces of the system’s operation allows building models of said operation, which
is needed for self-control (also called meta-control). In that respect, the functional architec-
ture we seek shall be applicable to itself, i.e., a meta-control system for the system shall be
implementable the same way the system is implemented to control itself in a domain. This
principle is a prerequisite for integrated cognitive control [10].

Knowledge is composed of states (be they past, present, predicted, desired or hypo-
thetical) and of executable code, called models. Models are capable of generating such
knowledge (e.g., generating predictions, hypotheses or goals) and are executed by a virtual
machine—in the case of AERA, its executive.

Models have a low granularity for two main reasons. First, it is easier to add and replace
small models than larger ones because the impact of their addition or replacement in the
architecture will be less than replacement of large models. In other words, low model gran-
ularity is aimed at preserving system plasticity, supporting the capability of implementing
small, incremental changes in the system. Second, low granularity helps compositionality
and reuse; small models can only implement limited low-level functions and, if abstract
enough, are more likely to be useful for implementing several higher-level functions than
coarser models that implement one or more such high-level functions in one big atomic
block. We have referred to this elsewhere as the principle of pee-wee granularity [6, 8, 11].

We also need the knowledge to be uniform, that is, encoded using one single scheme
regardless of the particular data semantics. This helps to allow execution, planning, and



learning algorithms to be both general and commensurate in resource usage. Thanks to the
executable nature of AERA’s models, knowledge and skills have a unified representation.

3 Attention & Scheduling

A cornerstone of our approach is that cognitive control results from the continual value-

driven scheduling of reasoning jobs. According to this view, high-level cognitive processes
are grounded directly in the core operation of the machine resulting from two complemen-
tary control schemes. The first is top-down: Scheduling allocates resources by estimating
the global value of the jobs at hand, and this judgment results directly from the products
of cognition—goals and predictions. These are relevant and accurate to various extents, de-
pending on the quality of the knowledge accumulated so far. As the latter improves over
time, goals and predictions become more relevant and accurate, thus allowing the system
to allocate its resources with a better judgment; the most important goals and the most
useful/accurate predictions are considered first, the rest being saved for later processing
or even discarded, thus saving resources. In that sense, cognition controls resource alloca-
tion. The second control scheme is bottom-up: Resource allocation controls cognition. Shall
resources become scarce (which is pretty much always the case in our targeted system–
environment–mission triples), scheduling narrows down the system’s attention to the most
important goals/predictions the system can handle, trading scope for efficiency and there-
fore survivability—the system will only pay attention to the most promising (value-wise)
inputs and inference possibilities. Reciprocally, shall the resources become more abundant,
the system will start considering goals and predictions that are of less immediate value, thus
opening up possibilities for learning and improvement—in the future even curiosity [2].

Technically, a job in AERA is a request for processing one input by one program (for
example, a model). All jobs (e.g., forward and backward chaining, explained in the next
section) are assigned a priority that governs the point(s) in time when they may be executed.
Jobs are small and uninterruptible, but might get delayed and even eventually discarded if
they become irrelevant. Jobs’ priorities are continually updated, thus allowing high-value
new jobs to get executed before less important jobs, and old jobs to become more valuable
than newer ones as new evidences constantly accumulates.1 Thus a job priority depends on
the utility value of the program and the expected value of the input. Value-driven scheduling
stands at the very heart of our design and underpins our aim of looped-back adaptation
and cognition. For detailed explanations of how exactly value, urgency, and priority are
calculated in AERA, we refer the interested reader to [1].

4 Model-based Knowledge & Skill Representation

AERA is data-driven, meaning that the execution of code is triggered by matching patterns

with inputs. Code refers to models (which constitute executable knowledge), that have either
been given (as part of the bootstrap code) or learned by the system. A model encodes pro-
cedural knowledge in the form of a causal relationship between two terms. A model is built
from two patterns, left-hand (LT) and right-hand (RT), both possibly containing variables.
When an instance of the left-hand pattern is observed, then a prediction patterned after the

1 It is worth noting that some jobs may get delayed repeatedly until their priority drops down to
insignificant numbers (for example when the urgency of a goal becomes zero, i.e., when its deadline
has expired) and eventually get cancelled. This is likely to happen in situations where either the
CPU power becomes scarce or the number of jobs exceeds the available computing power—which
is the expected fate of any system limited in both knowledge and resources.



right-hand pattern is produced. Reciprocally, when an instance of the right-hand pattern is
observed (such an instance being a goal), then a sub-goal patterned after the left-hand pat-
tern is produced. Additionally, when an input (other than a goal or a prediction) matches
a RT, an assumption is produced, patterned after the LT. Notice that multiple instances of
both forward and backward execution can be performed concurrently by a given model, i.e.,
a model can produce several predictions from several different inputs while producing sev-
eral goals and assumptions, from several other inputs at the same time. Models also contain
two sets of equations, called guards. These are equations meant to assign values to variables
featured in the output, from the values held by variables in the input. One set of guards sup-
ports forward execution, whereas the other one supports backward execution. In our current
implementation, guards are restricted to linear functions. Models form the very core of an
AERA system and their operation is detailed in the next subsections.

Our approach to knowledge representation has its roots in a non-axiomatic term logic.
This logic is non-axiomatic in the sense that knowledge is established on the basis of a
system’s experience; that is, truth is not absolute but rather established to a certain degree

and within a certain time interval. In our approach the simplest term thus encodes an ob-
servation, and is called a fact (or a counter-fact indicating the absence of an observation).
Terms, including facts, serve as input for (are matched against) the left-hand and right-
hand patterns of models. A fact carries a payload (the observed event), a likelihood value
in [0, 1] indicating the degree to which the fact has been ascertained and a time interval
in microseconds—the period within which the fact is believed to hold (or, in the case of a
counter-fact, the period during which the payload has not been observed). Facts have a lim-
ited life span, corresponding to the upper bound of their time interval. Payloads are terms
of various types, some of which are built in the executive, the most important of these being
atomic state, composite state, prediction, goal, command to I/O, model, success/failure, and
performance measurement. Additionally, any type can be defined by the programmer, and
new types can be created by I/O devices at runtime. A composite state is essentially a con-
junction of several facts, including facts whose payloads are instances of other composite
states, thus allowing the creation of structural hierarchies. A composite state is a program
with several input patterns, one per fact. Like models, composite states produce forward and
backward chaining jobs (explained in the next subsection) when paired with some inputs.

4.1 Chaining and Hierarchy

Motivated by drives, models produce sub-goals when super-goals match their right-hand
pattern, and these sub-goals in turn match other models’ right-hand pattern until a sub-goal
produces a command for execution by I/O devices. In parallel to this top-down flow of data,
the hierarchy of models is traversed by a bottom-up data flow, originating from inputs sensed
by the I/O devices that match the left-hand patterns of models, to produce predictions that in
turn match other models’ left-hand patterns and produce more predictions. These bottom-up
and top-down flows are referred to as forward and backward chaining, respectively.

Whenever a model produces a prediction, the executive also produces a corresponding
instantiated model: This is a term containing a reference to the model in question, a ref-
erence to the input that matched its LT and a reference to the resulting prediction. Such
a reflection of operation constitutes a first-class input—i.e., an observable of the system’s
own operation—which is, as any other input, eligible for abstraction (by replacing values
with variables bound together by guards) thus yielding a pattern that can be embedded in a
model.

When a model M0 features such an instantiated model M1 as its LT then, in essence,
M0 specifies a post-condition on the execution of M1, i.e., M0 predicts an outcome that is



entailed by the execution of M1. In case the LT is a counter-evidence of a model’s execu-
tion (meaning that the model failed to execute because despite having matched an input,
its pre-conditions were not met—pre-conditions are explained immediately here below),
the post-condition is referred to as a negative post-condition, positive otherwise. Symmet-
rically, when a model features an instantiated model as its RT, it essentially specifies a
pre-condition on the execution of the embedded model instance, i.e., when a condition is
matched (LT), the model predicts the success or failure of the execution of a target model
(the one an instance of which is the RT). More specifically, what a pre-condition means is
“if the target model executes, it will succeed (or fail).” In case the RT is a counter-evidence
of a model’s successful execution (predicted failure), the pre-condition is referred to as a
negative pre-condition, positive otherwise. Control with pre-conditions consists of ensuring
that all negative pre-conditions and at least one positive one are satisfied before deciding to
let the controlled model operate. This decision is made automatically by the executive by
comparing the greatest likelihood of the negative pre-conditions to the greatest likelihood
of the positive ones.

Planning concerns observing desired inputs (the states specified by goals) by acting on
the environment (i.e., issuing commands) to achieve goals in due time in adversarial condi-
tions, like for example the lack of appropriate models, under-performing models, conflicting
or redundant goals, and lack of relevant inputs. Planning is initiated and sustained by the
regular injection of drives (as defined by the programmer), thus putting the system under
constant pressure from both its drives and its inputs. In our approach, sub-goals derived
from goals are simulated, meaning that as long as time allows, the system will run “what
if” scenarios to predict the outcome of the hypothetical success of these simulated goals,
checking for conflicts and redundancies, eventually committing to the best goals found so
far and discarding other contenders. Here again, goals are rated with respect to their ex-
pected value. Simulation and commitment operate concurrently with (and also make direct
use of) forward and backward chaining.

4.2 Learning

Learning involves several phases: acquiring new models, evaluating the performance of
existing ones, and controlling the learning activity itself. Acquiring new models is referred
to as pattern extraction, and consists of the identification of causal relationships between
input pairs: inputs which exhibit correlation are turned into patterns and used as the LT
and RT of a new model. Model acquisition is triggered by either the unpredicted success
of a goal or the failure of a prediction. In both cases AERA will consider the unpredicted
outcome as the RT of new models and explore buffers of historical inputs to find suitable
LTs. Once models have been produced, the system has to monitor their performance (a)
to identify and delete unreliable models and, (b) to update the reliability as this control
value is essential for scheduling. Both these activities—model acquisition and revision—
have an associated cost, and the system must allocate its limited resources to the jobs from
which it expects the most value. Last but not least, the system is enticed to learn, based on
its experience, about its progress in modeling inputs. The system computes and maintains
the history of the success rate for classes of goals and predictions, and the priority of jobs
dedicated to acquire new models is proportional to the first derivative of this success rate.

A pattern extractor is a program that is generated dynamically upon the creation of a
goal or a prediction. Its main activity is to produce models, i.e., explanations for the unpre-
dicted success of a goal or the failure of a prediction. A single targeted pattern extractor

(TPX) is responsible for attempting to explain either the success of one given goal, or the
failure of one given prediction. Said goal or prediction is called the TPX’s target. Under



our assumption of insufficient knowledge, explaining in this case is much closer to guessing
than to proving, and guesses are based on the general heuristic “time precedence indicates
causality.” Models thus built by the TPXs are added to the memory and are subjected to
evaluation by other programs called prediction monitors. So their life cycle is governed
essentially by their performance.

A TPX accumulates inputs from the target production time until the deadline of the
target, at which time it analyses its buffer to produce models if needed: The TPX activity
is thus composed of two phases, (a) buffering relevant inputs and, (b) extracting models
from the buffer. At the deadline of the target, buffering stops, and the buffer is analyzed as
follows, when the target is a goal (the procedure is similar for predictions, see below):

1. If one input is the trace of the execution of one model that predicted the goal’s target
state, abort—this means that the success was already predicted.

2. Remove any inputs that triggered any model execution.
3. Remove any inputs that were assembled in composite states.
4. Reorder the buffer according to the early deadlines of the inputs.
5. For each input remaining in the buffer create a TPX-extraction job, the purpose of which

is to assemble a new model from the input and the target.

Shall the target be a prediction, on the other hand, step 1 would be:

1. If one input is the trace of the execution of one model that predicted a counter-evidence
of the prediction’s target state, abort, as the failure was already predicted.

Reaching step 5 triggers the second phase of TPX activity, where models are built from
inputs found in the buffer. The construction of a new model is performed—by a TPX-
extraction job—as follows, when the target is a goal:

1. The target is abstracted2 and forms the RT of a new model (let’s call it M0). If the input
assigned to the TPX-extraction job is synchronized with other inputs (that is, if their
time intervals overlap), then all these inputs are assembled into a single new composite
state: this new state is chosen as the LT of the model. Otherwise, the input is abstracted
and forms the LT of the model. Notice that new states are identified when their parts are
needed for the models being built (instead of resulting from blind temporal correlation):
Using composite states as models’ LT instead of just atomic states fosters the building
of structural hierarchies.

2. If, in a model, some variables in the RT (or in the LT) are not present in the LT (or in the
RT), then the job attempts to build guards (see below) to bind these to known variables;
otherwise, stop.

3. If some variables in a model are still not bound, then if the buffer is still not exhausted,
goto step 4; otherwise, goto step 5.

4. The job considers the next older input to build another model (M1) whose RT is an in-
stance of M0; the unbounded variables in M0 are passed from M1 to M0 as parameters
of M0. The execution of M1 allows the execution of M0: M1 is a positive pre-condition
on M0. Goto step 2.

5. All models are deleted that hold variables representing deadlines that are unaccounted
for, i.e., variables that cannot be computed neither from the LT or RT, nor from the
model’s parameters list. These models are deleted since they would produce predictions
with unbound deadlines, i.e., predictions that cannot be monitored.

As with TPX-accumulation jobs, the priority of a TPX-extraction job is a function of
the utility of the model that produced its target and of the incentive of learning said target.
It also depends on a decay function.

2 Here, abstraction means replacing values by variables.



4.3 Rating

In addition to the prioritization strategy, we use two ancillary control mechanisms. These
come in the form of two thresholds, one on the likelihood of terms, the other on the reliabil-
ity of models. When a term’s likelihood gets under the first threshold, it becomes ineligible
as a possible input for pattern matching; reciprocally, when the reliability of a model gets
under the second threshold, it cannot process any input—it is deactivated until said second
threshold is increased. These thresholds are a filtering mechanism that operates before prior-
ities are computed (the precise operation of these is beyond the scope of the present paper).
If the reliability of a model drops below a threshold THR1 then it is phased out: In this
mode the model can only create forward chaining jobs and produce silent predictions that
will not be eligible inputs to the regular models (i.e., models that are not phased out). Silent
predictions are still monitored, thus giving the possibility to improve to a model that was
recently getting unreliable. If the reliability of a phased out model gets above THR1, then
it is not phased out anymore and resumes its standard operation. When the reliability of a
phased out model drops below a second threshold THR2 (< THR1), the model is deleted
as are all the programs that were created to manage its productions; the corresponding jobs
are cancelled.

4.4 Reflection

Each time a model predicts, the executive produces a new term, called an instantiated model,
that references the input, the output, and the model itself. An instantiated model is thus a
trace of the execution of a model and, being the payload of a fact, constitutes an (internal)
input for the system and can be the target of learning, leading to self-modeling.

Even though self-modeling for meta-control has not been leveraged in our demonstrator
(described in the next section), this functionality has been implemented and is operational.
As we have argued before [2, 6] such functionality is a necessity for a developmental sys-
tem poised to adapt and make the best use of its resources. With it a system can, for exam-
ple, model the ways it routinely adopts for achieving some particular goals: This consists
of modeling sequences of model execution—these are observable in the form of internal
inputs—and, by design, can be modeled using the existing learning mechanisms. The bene-
fit of modeling sequences of execution can be, among others, to enable the system to com-
pile such sequences so as to replace a set of models, which normally have to be interpreted
by the executive, with a faster (but also more rigid) equivalent native machine code. Thus
self-compilation supports a lower-level re-encoding of useful and reliable knowledge, which
we expect will increase the scalability of AERA.

5 Experimental Results & Conclusion

In our first experiment with AERA, two humans interact for some time, allowing AERA to
observe their behavior and interaction; AERA’s task is to learn how to conduct the interac-
tion in exactly the same way as the humans do, in either role of interviewer or interviewee.
The knowledge given to AERA is represented as a small set of primitive commands and
categories of sensory data, along with no more than a few top-level goals such as “pleasing
the interviewer” (operationally defined as the interviewer saying “thank you” or asking a
new question). A very detailed analysis of this experiment can be found elsewhere [1].

AERA observed real-time interaction between two humans in the simulated equivalent
of a videoconference: The humans are represented as avatars in a virtual environment—
each human sees the other as an avatar on their screen. Their head and arm movements are



tracked with motion-sensing technology, their speech recorded with microphones. Signals
from the motion-tracking are used to update the state of their avatars in real-time, so that
everything one human does is translated virtually instantly into movements of her graphical
avatar on the other’s screen. Between the avatars is a desk with objects on it, visible to
both participants. One human is assigned the role of an interviewer, the other the role of an
interviewee; the goal of their interaction is collaborative dialogue involving the objects in
front of them.

The data produced during their interaction is represented as follows. Body movements
are represented as coordinate changes of labeled body parts of the avatars. Each audio signal
is piped to two processes: an instance of a speech recognizer (Microsoft SAPI 5.3), and to
an instance of the Prosodica prosody analyzer [12]. The speech recognition is augmented
with timestamps on the words produced (approximate accuracy of time-stamping typically
±100ms or better), and filtered through a set of 100 allowed words (necessary due to the
many false positives produced in live interaction). Words time-stamped with the estimated
time-of-utterance are typically output as intermediate hypotheses between 200 and 1000ms
of being uttered, with a “final guess” delivered for each audio segment after a 200ms silence
is detected. The prosody analyzer produces time-stamped sound-silence boundaries (accu-
racy 16–32ms) and prosody information in the form of F0 (with update frequency of 6Hz;
approximate accuracy of 40ms). This data is the input to AERA, streamed to it in real-time.

The task assigned to the two humans is for the interviewer to ask the interviewee to pick
up and move objects around on the table, and to talk about some of their properties. We
provide AERA with top-level goals, contained in the system’s “seed.” Testing consisted of
AERA replacing either human and conduct the interaction in an identical manner, in the
role of either interviewer or interviewee.

AERA learned everything that it observed in the human-human interactions which is
necessary to conduct a similarly accurate and effective interaction. The socio-communicative
repertoire acquired autonomously by AERA after an observation period of approximately
20 hours, has been correctly learned, with no mistakes in its subsequent application, in-
cluding timing of all actions. This repertoire, including skills in either role (interviewer and
interviewee), consists of:

– Correct sentence construction, correct word order.
– Effective and appropriate manual and head deictics (gesturing towards object being

talked about at the right time, gazing towards it using head direction when mentioned
or pointed at).

– Appropriate response generation; answer (as interviewee) and sequence of questions
(as interviewer).

– Proper multimodal coordination in both interpretation and production, at multiple time-
scales (interview, utterance, and sub-utterance levels).

– Turn-taking skills (avoiding overlaps, avoiding long pauses), and utterance production;
presentation of content (answer/question) at appropriate times with regard to the other’s
behavior.

– Interview skills—doing the interview from first question to last question.

The results from the experiment shows without doubt that AREA correctly acquired
and mastered correct usage of all communication methods used by the human interviewer
and interviewee in the human-human condition when conversing about the recycling of the
various objects’ materials. The complete absence of errors in AERA’s behaviors, after the
observation periods in both conditions, demonstrate that very reliable models have been
acquired, and that these form a hierarchy spanning at least two orders of magnitude in time.
These models correctly represent the generalized relationships of a non-trivial number of



entities, knowledge which had not been provided to the system beforehand by its designers
and was acquired autonomously, given the bootstrap seed initially provided.

The tasks in the experiment require AERA to learn and abstract temporal sequences
of continuous events (utterances and multimodal behavior), as well as logical sequences
and relationships (word sequences in sentences, meaning of words and gestures) between
a number of observed data. These were acquired through a method of generalization using
induction, abduction and deduction, allowing AERA to respond in real-time situations that
differ from what it has seen before (the humans were not trained actors and did not repeat
exactly any of their actions in any of the scenarios).

We have demonstrated an implemented architecture that can learn autonomously many
things in parallel, at multiple time scales. The results show that AERA can learn complex
multi-dimensional tasks from observation, while provided only with a small ontology, a few
drives (high-level goals), and a few initial models, from which it can autonomously boot-
strap its own development. This is initial evidence that our constructivist methodology is a
way for escaping the constraints of current computer science and engineering methodolo-
gies. Human dialogue is an excellent example of the kinds of complex tasks current systems
are incapable of handling autonomously. The fact that no difference of any importance can
be seen in the performance between AERA and the humans in simulated face-to-face in-
terview is an indication that the resulting architecture holds significant potential for further
advances.
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1. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M., Her-
nandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A., Jonsson,
G.K.: Bounded recursive self-improvement. Tech. Rep. RUTR-SCS13006, Reykjavik University
(2013), http://arxiv.org/abs/1312.6764
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7. Thórisson, K. R. (2009). From Constructionist to Constructivist A.I. Keynote, AAAI Fall Sym-
posium Series - Biologically Inspired Cognitive Architectures, Washington D.C., November 5-7,
175-183. AAAI Tech Report FS-09-01, AAAI press, Menlo Park, CA

8. Nivel, E., Thrisson, K. R. (2009) Self-Programming: Operationalizing Autonomy. Proceedings of
the Second Conference on Artificial General Intelligence. 2009.
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