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Abstract 
From its early beginnings artificial intelligence (AI) 
targeted the ambitious goal of creating machines 
with high levels of autonomy and intelligence. A 
major determinant of scientific and engineering 
progress is the methodology employed. Instead of 
being specifically designed for this goal, the main 
methodologies employed so far in AI have closely 
followed those of general software development: 
Algorithms are developed for particular (pre-
defined) tasks in particular (pre-defined) conditions. 
At the center are programming languages designed 
for humans to construct software architectures by 
hand, who implements systems line by line, like a 
construction worker laying down bricks. This 
constructionist approach has produced a diverse set 
of isolated AI solutions to relatively small problems, 
the generally intelligent machine still being a distant 
dream. We argue that going beyond current systems 
and realize AI’s original and ambitious goal requires 
a different kind of approach, one that specifically 
takes account of the nature of the system to be built. 
Here we look at arguments for this claim, identify 
some features of general intelligence likely to 
dictate features of such a methdology, and discuss 
what an appropriate methodology may look like.  

1 Introduction 
Methodology and research tools are a key determinant of the 
rate of scientific progress: The microscope impacted 
significantly the rate of progress in the study of the 
microscopic; gene sequencing equipment radically sped up 
the rate of progress in the investigation of genomes, and the 
spatio-temporal resolution of fMRI equipment has had a 
profound effect on rate of progress in brain research, to take 

                                                
1 After Deep Blue defeated Gary Kasparov in 1997 the the 

developers of the technology at IBM struggled for years trying to 
adapt the technology and knowledge gained on the project to other 

some examples. Over the course of history these were not 
singular events, never to be seen again: Improvements in 
methodology regularly transform research and progress in all 
fields of scientific endeavor. Methodology, with its concrete 
and conceptual tools, is no less important for progress in AI 
than in other fields of science and engineering. If we want to 
build a system with general intelligence—a property of 
cognition directly related to a system’s propensity for 
autonomy—it behooves us to choose our methodology 
carefully. Considerations of methodologies in turn requires 
us to take a close look at our background assumptions of the 
phenomenon we want to re-create artificially.  

If the history of AI methodology teaches us anything, 
surely one thing must be that hanging our hat on a single task 
as the candidate for elucidating the central principles of 
general intelligence is a terrible idea. We are talking about 
e.g. the hypothesis, central in the early days of AI and still 
prevalent to day in various guises, that any machine capable 
of beating a world champion in chess would necessarily 
possess general intelligence. It wasn’t just partly wrong, or 
somewhat off target: It could in fact not have been more 
wrong.1 Granted, when the hypothesis was fielded 
researchers did not have the 50 years of history we now have 
for telling them otherwise. A bit of skepticism, built on this 
fact – and the limited progress towards general AI in the past 
60 years – seems a healthy approach to take today.  

To be autonomous means to be independent from outside 
forces and influences. Self-adaptation is the process of a 
system to change its own operation, behavior, or structure, to 
better achieve its own goals in a particular environment. Here 
we assume that an agent’s drives (top-level goals) are 
provided from the outside, just like evolution has imbued 
living entities with survival and reproduction drives, by a 
designer that ensures that her artifacts serve the purpose they 
were created for. In highly autonomous systems very little 

tasks, projects, systems, and fields—to virtually no avail [Stork 
1998].  
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other knowledge is needed—just a small “seed” to bootstrap 
the system’s knowledge acquisition, also called “learning”.2  

A general learner with self-adaptation capabilities will be 
more autonomous the more diverse tasks it can learn, the 
more skills it can bring to bear on a task at any single point 
in time, and the more diverse environments and it can handle. 
Its generality may also be determined by how quickly it can 
learn and adapt to changes of various sizes and kinds, and the 
diversity of novel and unforeseen tasks and environments it 
can handle. A third way in which generality can be measured 
is by a system’s ability to handle underspecification of task 
and environment. 

 
FIG. 1. A: Simple machine learners (L0) take a small set of 
inputs (x, y, z) and make a choice between a set of possible 
outputs (α, β), as specified by a system’s designer. B: More 
complex learners (L1, … L4) handle a number of tasks (tsk1, 
… tskn) in many environments (e1, … en). See text for details.  

Current state-of-the-art learners come with severe 
limitations compared to the kind of learning found in nature 
(FIG. 1, L0). For instance, increasing the set of inputs, or 
increasing the number of required outputs, will either break a 
learning algorithms or slow learning down to impractical 
levels. When taught something different from what they 
already know, they will take equally long (or longer!) to learn 
the new thing (because they cannot bring prior experience to 
bear on a new task), and will in fact forget everything they 
knew before.  

In reference to FIG. 1, let task tski refer to relatively non-
trivial tasks, e.g. assembling furniture and moving office 
items from one room to another, simple learner L0 is limited 
to only a fraction of the various things that must be learned to 
achieve such a task. Being able to handle a single such task 
in a specific type of situation (S1) with features that were 
unknown prior to the system’s deployment, L1 is already 
more capable than most if not all automatic learning systems 
available today. L2, L3 and L4 take successive steps up the 
complexity ladder beyond that, being able to learn numerous 
complex tasks (L2), in various situations (L3), and in a wider 
range of environments and mission spaces (L4). Only towards 
the higher end of this ladder can we hope to approach truly 
                                                

2 We could also use other measures, e.g. the level of 
dependency of a developing system on particular environmental 

general intelligence—systems capable of learning to 
effectively and efficiently perform multiple a-priori 
unfamiliar tasks, in multiple a-priori unfamiliar situations, in 
multiple a-priori unfamiliar environments, on their own. 

While artificial learning machines have existed for 
decades, their methodological and theoretical foundations 
still limit them to a handful of input and output parameters, 
typically on what we would in general parlance call a single 
pre-defined task in a well-defined, unchanging environment. 
Current machine learning algorithms are also a prime 
demonstration of what is called negative transfer of 
training—and close to a worst-case incarnation of that kind.  

Researchers targeting generality must not only overcome 
this fundamental limitation of modern machine learning, they 
must go beyond it and address learning of many tasks, by 
systems situated in information-rich environments, in which 
simultaneous and continuous acquisition of relevant 
knowledge, and contemporaneous knowledge of multiple 
skills which can be transferred to new tasks, may be the 
primary or even only option for successful adaptation. To 
advance the state of the art on autonomy and generality we 
should ask “What kinds of control mechanisms can support 
that kind of adaptation across multiple novel tasks, situations, 
and domains, autonomously?” This is of course a central 
question in the field of AI, and clearly one that will not be 
answered in a short paper. The immediate follow-on 
question, and the central topic of this paper, is:  

What kinds of methodologies can help us develop 
such systems?  

We will look at this question from four different but related 
perspectives, all leading to a similar conclusion: Present AI 
methodologies, all of which we argue can be categorized as 
constructionist methods [Thórisson 2012], fall short of being 
a sufficient and necessary framework for addressing the 
requirements relevant to creating machines with high levels 
of general intelligence and autonomy.  

The rest of the paper is organized as follows: After 
analyzing the limitations of constructionist methodologies 
(section 2) we look at the operational characteristics of 
adaptive systems that may be important for the task at hand 
(section 3), followed by dissecting how constraints on the 
system we seek to build put requirements on the methodology 
(section 4). In section 5 we look at two defining properties of 
higher natural intelligences: introspection, or reflection, and 
cognitive growth. Lastly (section 6) we pull together some 
main themes from the preceding sections, and finish (section 
7) by drawing conclusions and discussing future work.  

2 Which Methodology: Limitations of the 
Constructionist Approach 

Artificial intelligence researchers use methodologies that are 
fundamentally the same as those used in computer science 
and software engineering in general—the same programming 
tools, same hardware, same operating systems, same 

circumstances for its bootstraping or survival; while important, this 
issue is out of the scope of this paper. 
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“algorithmic thinking”, and the same software development 
techniques. Just like in any other software development 
efforts, the approach puts the AI researcher in the role of a 
“construction worker”, building systems by hand. Virtually 
all available methodologies for AI are of this constructionist 
kind—the system programmer laying down each instruction 
like a construction worker lays down the brick to a house. 

2.1 Constructionist Approaches in a Nutshell 
Constructionist approaches lead system development along 
the path familiar to all software developers: A task and its 
execution environment is identified and dissected (by 
humans), solutions are proposed (by humans), subsequently 
algorithms are developed (by humans), and the resulting 
system behavior evaluated (by humans)—all by hand.3 

Building a vacuum-cleaning robot,4 for instance, will 
proceed by a system designer (a) identifying all relevant 
aspects of target rooms and floors, (b) anticipating the 
variability to be expected in these with future customers, and 
(c) defining all major and minor aspects of the system's 
operations to achieve its vacuum-cleaning task, acceptably 
accurately and reliably. However implemented, the system 
receives pre-defined high-level pragmatic rules – heuristics – 
to decide how to achieve what typically is a single operational 
goal, designed and written by humans, and a relatively 
detailed specification of its operating environment from its 
designers is “baked into” its design. The interaction between 
the rules may be complex, even unforeseeable, and thus the 
ultimate behavior of the system may be difficult or 
impossible to predict in detail, at least without running the 
system in some set of scenarios intended to evaluate its actual 
behavior under various conditions.  

These systems are typically not written to come up with 
their own methods for achieving their goals. Likewise, they 
are incapable of coming up with their own (sub-)goals. 
Nevertheless, making these systems more autonomous would 
requires precisely such capabilities.  Such systems match the 
old cliché very nicely: They only do what the programmer 
programmed them to do.  

We can of course augment such hand-crafted systems 
with modern machine-learning techniques, and this will 
typically proceed by the designer identifying which 
parameters shall be handled by machine learning algorithms 
(cf. FIG. 1). The input and ouptut variables of the leaner will 
be hand-picked by the designer, and the training will be 
directed by hand by the designer. All in all, while some 
limited aspects of the system may now have been 
automatically programmed, the addition of machine learning 
will not fundamentally change the methdology otlined above: 
All system goals and subgoals are identified and specified by 
the designers and baked into the design, and the correctness 
of the system’s behavior will be verified by the system’s 
designers. The overall system design still follows a 
constructionist methodology.  

                                                
3 Granted, several tools may be used, but these generally don’t 

go beyond what may justifiably be called “semi-automatic hand-
operated tools”. 

2.2 Some Limitations of Current Systems 
To see if this methodology is suited for the kinds of systems 
we target – with increased levels of intelligence – we must 
look at what kinds of processes are missing. One such activity 
is the ability of the system to not only to be able classify its 
inputs, but rather the more general ability of being able to 
learn to classify them, in light of its top-level goals (drives).  

To take some examples, a thermostat’s method for 
achieving its task is selected by the designer, and 
operationalized explicitly in its design. The input variable 
(temperature) is hand-selected, and its range (maximum, 
minimum meaningful value) is also decided by the designer 
and made implicit in the device's design. Granted, a 
thermostat is typically not considered “intelligent”. Note, 
however, that the exact same way of construction is used for 
expert systems, which are generally considered AI systems 
and often cited as a major milesone for AI of the past four 
decades. These systems have in common that they take input, 
e.g. heat (in the case of thermostat) or a description of patient 
symptoms (in the case of medical diagnosis), and process this 
without concern for its relevance to their own task, as this is 
guaranteed by the system's users, as is also the guarantee that 
the input be noise-free – not containing irrelevant data. These 
aspects are shared by virtually all modern AI systems. 
Because they are thus hard-wired to do a sigle task, and their 
input is fixed rather rigorously beforehand, the input's 
meaning is decided for them. This means that the relation of 
the input to what they do with it, and the behavior they are 
capable of producing, is implicit in their design from the 
outset. It should be clear then that such systems cannot 
become truly autonomous: Since they cannot learn to classify 
inputs (after they leave the lab), they cannot handle diversity, 
and thus cannot become general. This limitation is inherent 
in them as a result of the inherent properties of the 
methodology used to develop them.  

A learning system using modern artificial neural networks 
(ANN) to do the heavy lifting is in some ways a bit more 
capable than the above systems, but only slightly so. ANN-
based systems still have their task handed to them by their 
designer, their input variables defined beforehand, including 
their operating ranges. They can only learn a single task, 
whether it will be identifying letters on number plates of 
automobiles, finding human faces in photographs, or 
adjusting the autofocus on your digital camera in realtime, 
because they have no mechanism for separating out that 
which is new and that which is old, as already mentioned in 
the discussion of classification above.  

Another important limitation of modern machine learners, 
and one which affects their potential for generality and 
autonomy, is that after they are built and deployed their 
learning must be turned off. This is because their design 
prevents them from changing in predictable ways after they 
leave the lab: “In the wild” they change unpredictably. Thus, 
currently no system exists that can handle input that is 

4 These will be the same whether the system is physical and 
operates in the physical world, or virtual and operates in some 
more abstract information environment. 
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unexpected or unforeseen (by the system’s designer), as 
handling such input would require autonomous learning. 
Current systems must therefore “call home” when facing 
circumstances outside of their strictly defined operating 
ranges—i.e. re-design by the system’s engineers. 

2.3 Semantics and Autonomy 
The problem with constructionist methodologies lies in 
forced semantics: The meaning of the data to be imbued to 
the system is provided directly by the system’s designers 
when the systems are designed. Current AI systems cannot 
handle the unforeseen or unexpected because the methods 
encourage a task-driven design, where task-specific features 
are transferred directly into software via human-designed 
huristics. What is needed are methods that help the designers 
move to the next level up, by supporting and encouraging 
designs where mechanisms for system-created operational 
semantics are sought instead. Put more succinctly, 
constructionist methods are strictly allonomic – they rely on 
the semantics and intelligence of the designer, instead of 
allowing the system itself to generate its own meaning. An 
autonomous and general system is independent of particular 
tasks, and achieving such task independence calls for the 
system to be provided with the mechanisms that allowed the 
human designer himself to come up with task-specific 
heuristics in the first place: The system itself should be rigged 
so as, when given a specification of one or more tasks, to 
come up with useful heuristics on its own. 

3 Which Methodology: Operational 
Characteristics of Adaptive Systems 

Let’s now look a bit closer at the features that we seek for an 
autonomous and general artificial intelligence [Thórisson & 
Nivel, 2009]. Adaptation involves the ability to achieve high-
level goals in spite of obstacles presented by the environment. 
Such obstacles come in many forms, but generally they 
represent a mismatch between the system's knowledge 
needed for achieving its goals and the way the world operates 
or is currently structured. An intelligent system must be able 
to (a) assess the world it operates in, (b) realize ways of 
achieving its goals, (c) produce the effects on the 
environment that achieve those goals, and (d) evaluate this 
effect in light of its goal(s).5 We can say that for an agent A 
with knowledge k, in situation ϰ, seeking goal g in ϰ, an 
obstacle is a state of ϰ that prevents A from directly applying 
k to change (some subset of) ϰ to (subset) g. To know whether 
k will achieve g, A must have knowledge of the relevance of 
k to ϰ, and the ability to apply it to ϰ to achieve g, as well as 
to assess whether and when g has been achieved. 

                                                
5 Biological and robotic systems assess the environment via some 
form of vision, touch, and hearing, the adaptation is done via 
learning, thinking, and meta-cognition, and the behavior is 
produced via controlled, targeted actions of a body. Disembodied 
intelligences – e.g. an intelligent software system that “lives in the 
cloud” – while not being in control of an actual physical body or 

3.1 Learning for Generality 
Concerning capabilities that set systems whose intelligence is 
general apart from whose intelligence is not, let’s look at four 
already alluded to above.  

1. Although it is given in this context, we will mention 
first the fundamental ability to learn. This requirement 
excludes all expert systems and similarly “hard-wired” 
systems (e.g. chess programs of the 90s), as well as many 
others touted as milestones in the field. It is no surprise that 
these are not considered “general”, but perhaps somewhat 
surprising the high regard in which many have held them.  

2. Second, the learning must be always on, most notably 
after the system leaves the lab – after the designer releases 
the system for good into its target operating environment. 
This excludes all artificial neural networks, since these have 
to be frozen at release time due to the unpredictability in their 
behavior that otherwise would arise. While any kind of 
learning is better than no learning, the most useful learning is 
the one accompanied by the capacity for abstraction, what has 
been called induction—the ability to generalize from 
experience [Wang 2006].  

Now is a good time to remind ourselves that the kinds of 
systems we are interested in should be able to operate with 
insufficient knowledge—in fact, the ability to learn is not 
necessary if we have complete knowledge already [Wang 
2006]. The same holds for induction with respect to 
incomplete knowledge: Induction is most useful when 
combined with an ability to hypothesize causal links between 
newly discovered phenomena.  

3. So, third, a necessary function for generality is the 
ability to accept inputs with little or no prior familiarity to the 
system, identify patterns in the input, model their relation, 
and generalize from it. It could be argued, in fact, that this is 
a central mechanism of any learning system embodying 
lifelong continuous – or cumulative – learning, since the same 
mechanism is needed to separate irrelevant patterns from 
relevant ones, and to separate old and valid classifications of 
patterns from new ones, so as not to unlearn what has already 
been learned (avoiding negative transfer of training).  

4. Fourth, armed with these capabilities, the system must 
(a) be capable of modifying its models of the environment, 
which due to incomplete knowledge will have unavoidable 
conflicts and errors, based on the quality of their usefulness 
for achieving goals and predicting how the environment 
works, through a feedback loop outside the system. This, in 
effect, is the learning by experience mechanism, which is 
necessary for all systems capable of adapting to environments 
not known at design time. 

5. Fifth and lastly, a mechanism that will greatly affect a 
system's adaptability its capacity for cognitive growth—of 
adapting its adaptation mechanisms. In other words, its 
ability to learn to learn. A general-but-mostly-static learning 

having physical perception mechanisms such as cameras and 
microphones, will also consist of these functional structures, 
otherwise it would not be an independent system separate from its 
environment. Here we will assume that such an explicit separation 
between the system and its environment exists. 
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mechanism may be sufficient for a certain set of 
environments with a particular range of complexity. But an 
ability to develop new learning methods would allow a 
system to develop improvements or even brand-new learning 
mechanisms, and to adapt “from scratch” to a wider range of 
environments. It would enable an intelligent system to 
develop and subsequently choose the most appropriate 
learning mechanism for the environment and task at hand at 
any time. This can likely increase a system's learning and 
adaptation abilities by orders of magnitude. A prerequisite for 
this to be possible is a system's propensity for pattern 
classification: Without a sufficient level of input 
classification fidelity an appropriate learning mechanism (or 
any other cognitive mechanisms for that matter) cannot be 
correctly chosen in each circumstance. (Another requirement 
is that the system must be able to turn this classification 
capability onto its own control architecture, and equally 
importantly, that it can program/re-program itself. We will 
get back to this in more detail below.) 

3.2 An Illustrative Example 
To put this more succinctly, given environment e, in a current 
state s1 (es1), and agent A with (compound) goal g1 to bring 
about state s2 using method m1, let’s say behavior b1 could 
satisfy m1 and bring e directly from the current state s1 to s2 
(es1 → es2) to achieve g1. In this example the agent has never 
seen es1, however, and does not contain b1 in its memory. 
Thus, from identifying es1 A cannot produce b1 immediately 
or directly. This calls for adaptation behavior, which requires 
sub-goal(s) to be produced that entail any, some, or all of the 
following covert and overt operations on part of A: 1. 
Reasoning about how to achieve s2, resulting in any, some, or 
all of the following operations; 2. Experimenting on the 
world to obtain b1 or an alternative suitable behavior; 3. 
Analyzing g1 to see how much variation in s2 and m1 will still 
count as g1 having been achieved; 4. Modifying g1, or 
producing (a set of) alternative goal(s) which result in an 
acceptable modifications of, or alternatives to, m1 and/or s2; 
5. Evaluating through reasoning and/or experimentation on 
the world whether g1 is well formulated in its present form, 
leading to 4 or 6; 6. Reconsidering g1, leading to 4 or to 
abandoning g1 altogether. 

Adaptive behavior 3 requires g1 to have associated with it 
some range of acceptable deviations, or being amenable to 
computation of such ranges. While adaptation behaviors 3, 4, 
5 and 6 are typically not seen, strictly speaking, as “achieving 
one's goal(s)”, they frequently happen in the real world, and 
it should be obvious that any learning human being will 
occasionally abandon goals, as well as selecting some in 
favor of others. Note that such considerations are only 
relevant for an agent with multiple goals situated in an 

                                                
6 If intelligence were a mathematical phenomenon we could 
proceed in our AI research as we do with other mathematical 
phenomena—through sound mathematical methods. This not being 
the case, however, means that such methods are fundamentally 
inappropriate as a main approach—experimentation is the obvious 
choice for any experimental phenomenon; baring that possibility, 
as for instane in astrophysics, software modeling and simulation is 
the second most appropriate. How difficult it turns out to 

environment with noticeable uncertainty. In this kind of 
adaptation, evaluation of the cost of modification, 
abandonment, and acceptable deviations, are an important – 
and most likely a necessary – part of the learning. 

3.4 Conclusion from Operational Characteristics 
We can only conclude, again, that the machine learning we 
would need for a machine with general intelligence and high 
levels of autonomy are not well served by a methodology that 
keeps system design close to one or more particular tasks. 
Current popular programming languages used in AI (C++, 
Python, LISP, etc.) seem a rather poor match to help us 
develop the meta-skills, such has learning to learn, reflection 
(see below), and flexible pattern matchings, needed to move 
to higher levels of intelligence and autonomy.   

4 Which Methodology: The Argument from 
Constraints 

Traditional software systems’ architectures consist of a set of 
software units, or modules, which in turn run on a particular 
hardware implementation, whose joint runtime behavior 
defines the system's capabilities. A software architecture 
contains thus, by definition, several mechanisms that interact 
to produce a system's overt and covert behaviors. What we 
call control architecture is the software and hardware 
concerned with managing the long-term holistic behavior of 
the system; hardware must be included in that because no 
computation or other real-world effect can be realized 
without a physical embodiment. Natural intelligent systems, 
such as humans, are capable of exhibiting a variety of 
complex overtly observable behaviors, most of which are the 
result of years and decades of learned adaptation. Some part 
of this variety stems from fundamental principles of the 
underlying cognitive architecture, and some of it are merely 
side-effects of nature's specific implementation(s).  

The covert behaviors of the various kinds of control 
architectures that can bring about intelligent behavior have, 
however, turned out to be very difficult to reverse-engineer. 
While cognitive scientists are dedicated to reverse engineer 
the particular mechanisms of natural intelligences, artificial 
intelligence is more focused on the general principles of that 
class of mechanisms. Nevertheless, both groups are in effect 
looking to reverse-engineer the special natural phenomenon 
we call “intelligence”. This reverse-engineering effort 
proceeds through the application of particular methodologies, 
whose features tend to be heavily guided by the background 
assumptions. And since intelligence is a natural 
phenomenon6 we should use the phenomenon in question to 
help us pick the best methdology. One way is by scrutinizing 
the constraints that that phenomenon must satisfy. 

characterize and understand intelligence mathematically remains 
unclear; as of today, finding “the solution” to intelligence solely 
through mathematics is about as likely as it would have been for 
the Wright brothers build a flying machine by studying 
mathematics. As it turned out, airodynamics was developed much 
later, by reverse-engineering machines already airborne  
[Thórisson 2013].  
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4.1 Understanding Constraints 
For any system Sx that we may want to model, and which is 
subject to few constraints, a large set of possible 
implementations can produce the observed behaviors of Sx; 
practically speaking we will have quite a bit of freedom in 
how we capture the system in our re-creation – a large set of 
model variants could be conceived of that replicate the 
targeted features of Sx equally well. If it is rolling behavior 
we want to model, a round rock, a melon or an orange all 
suffice to replicate the rolling behavior in a slope or when 
pushed: Reverse-engineering “rolling behavior” of an object 
means discovering that its design must approximate a circle. 
As the number of constraints that Sx must meet is increased, 
a decreasing set of model variations could possibly reproduce 
its capabilities. The steering mechanism on automobiles has 
for instance numerous possible implementations, some better 
than others, but all capable of making the car turn. It took 
centuries for the current mechanisms with this purpose to be 
developed, and they are based on many inventions and 
innovations, most of which are necessary to achieve the full 
behavioral range of modern automobiles. Because the list of 
constraints on a modern steering mechanisms includes a lot 
more than simply “rolling”, the set of possible designs is 
heavily limited by these constraints. 

Now, if we want to uncover the set of control 
architectures capable of producing the kind of adaptive 
behavior we see in natural intelligences we must identify the 
key principles that enable these architectures to produce their 
results. This is not as simple as it sounds, in particular 
because these principles must be inferred from opaque covert 
behaviors that, while produced by the control system, are 
only a tiny fraction of the full repertoire of what that – or any 
– cognitive system found in nature are capable of. 

4.2 Constraints on Systemic Behavior 
A biological cognitive system A is capable of achieving goals 
through a wide range of covert behaviors b of which some bn 
⊂ BA will be observed to be produced in a task-environment 
en ⊂ E, such that:  	

b1 are produced in e1 
b2 are produced in e2 
  …   
bn are produced in en 

and this full set being the behavioral repertoire of A: RB(A). 
Now, b1 is picked by a system designer as an example 
behavior that his artificial system A' should be able to 
produce in a simplified environment e'1 ⊂ E; let’s say b1 is 
e.g. winning games of blitz chess (the behavior), e'1 is blitz 
chess games (the task-environment consisting of the rules of 

                                                
7 By “complexity“ we mean something like “intricacy“, such that 
when the intricacy of the task-environment increases, the set of 
behaviors that can achieve the goals of that task-environment is 
reduced, relative to any and all behaviors that could be expressed 
in that task-environment but do not achieve the goal(s). In the 
vernacular this means “the task gets harder“. In our discussion 
complex task-environments are also harder to formalize.  

chess plus time constraints), and E is a set of board games. 
Scientists and engineers now venture to build A' using current 
(constructionist) methodologies, using b1 as a test case to 
measure the evolving design against. Their hope is that the 
system thus built, and the principles and mechanisms that 
enable A' to produce b1 in e'1, will replicate some important 
fundamental principles behind the full system capable of 
RB(A), and turn out to be general enough to allow A' to 
produce a larger set from RB(A) than just the example 
behaviors b1 (preferably the full repertoire RB(A)). 

Even though A' may ultimately be able to produce b1 in 
e'1 (RB(A)= b1|e'1), assuming the constraints that e'1 brings on 
the behavioral repertoire are from those of e'2, e'3, ... e'n, A' is 
unlikely to be capable of b2, b3, and b4, not to mention the full 
behavioral repertoire of A, because (a) the constraints of e2, 
e3, etc. were never considered as design targets for A', and 
(b) neither were any of the b2, b3, etc. As the complexity7 of 
the targeted task-environment increases from which the 
example task is drawn, the larger the number of constraints 
on the target system brought by it. Given the complexity of 
tasks and environments that general (human-level) 
intelligence is capable of addressing, we must assume that the 
number of constraints it brings on the target system – general 
intelligence – is rather large. The resulting artificial system 
A' thus built is therefore much more likely to be limited to e'1 
than to generalize beyond it, especially for task-environments 
more complex than chess.8 A system built to play e.g. blitz 
chess is more likely to be strictly limited to chess than to be 
extendable to Backgammon and Go, as the rules of these 
games were never considered by the system’s designers. 
Using this methdoology, counter to the the original hope of 
going beyond the example task, the machine is stuck within 
the confines of the original constraints chosen for its design. 

What we see here is a limitation of this kind of approach 
as a method of systems research: While reverse-engineering 
ultimately requires us to actually build our model to see if it 
can produce the full set of behaviors we hoped for, this only 
works if the correct constraints are brought into the 
engineering effort from the outset. This is because each 
additional en requires the system to be capable of producing 
an increasingly larger yet more specific set of behaviors, 
including the meta-ability to differentate between ens. 
Considering a wider range of behaviors, tasks and 
environments pushes the design considerations to include a 
wider scope than a single example task can provide. A system 
that meets a large set of constraints in its behaviors (i.e. each 
en requiring the system to behave in specific ways and not 
others, thus imparting constraints on the system) has fewer 
degrees of freedom—fewer ways of realization—than 
another that must meet fewer constraints. Bringing (too) few 
constraints to bear on the development effort, from among the 

8 It is of course not categorically impossible that, through pure luck, 
such an approach could produce a system that generalizes beyond 
the inital task. However, with an increasing number of constraints 
the probability of such luck grows quickly and asymptotically 
towards zero. 
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myriad of tasks natural intelligences are observed to be 
capable of, such as building “intelligent” systems that target 
a small isolated task, is likely to completely leave out 
systemic features that are absolutely necessary for producing 
the capabilities of natural cognition.  

Considering too few constraints opens up the design 
possibilities and reduces the chance of finding the “golden 
key” (if it exists); on the other hand, considering a large set 
of constraints complicates things, and often makes the 
research exceedingly more difficult. Increased effort and 
closer attention to how we pick our constraints will help us 
end up with the necessary and sufficient constraints that allow 
us to build truly general systems.  

4.2 Two Lines of Inquiry 
Our starting point for exploring what kinds of control 
architectures can bring about intelligent behavior must 
include two lines of inquiry. First, we need to try – using any 
relevant method available – to hone in on which observable 
behaviors and features are more likely than others to serve as 
good (“the right”) constraints to steer design and reverse-
engineering efforts to the small subset of architectures 
capable of producing thems. Second, and in parallel, we need 
to hone in on the key candidate architectural principles that 
enable such intelligent behavior to be produced, through any 
sensible means possible (including using the observable 
behaviors hypothesized to help with that effort). 

The combination of these two lines of inquiry brings 
about a new insight into what our methodology really must 
look like: Yes, we need to identify a set of behavioral features 
and characteristics B = a, b, … n sufficiently representative 
of the ultimate target range of behaviors aimed for. We must 
ensure that this subset of target behaviors is as wide as 
possible, because we want to use these to hone in on the kinds 
of characteristics are critical for higher-level cognitive 
control (e.g. human-level intelligence). The obvious way to 
do this is by observing natural intelligence in action: 
Constraints for our reverse-engineering efforts must come 
from the phenomenon that we wish to understand and 
(selectively) imitate. We must not forget that in AI research 
the tasks that natural intelligences are observed to be capable 
of are not our target—our target is the general architectural 
principles hidden inside the animal's skull that enable this.  

Selecting any single behavior bn may be tempting, and 
seem like a good strategy—if we could only find a good 
representative task that promises to help us hone in on the 
architectural principles of cognition. But to do this would be 
a mistake – unless – we take extra steps to ensure that that 
subset is highly likely to contain behaviors and capabilities 
that help us constrain the set of potential architectural 
mechanisms underlying the intelligent system's key 
principles of operation. This is, of course, just as difficult as 
it sounds. Some key candidates for this role have, however, 
already been mentioned: Operating under assumptions of 
continuous external time (world clock), learning – 
continuously and cumulatively – new tasks in new 
environments. Other characteristics include operation and 

adaptation in spite of incomplete knowledge, insufficient 
time, and limited computational power.  

But identifying a promising set of behaviors that helps us 
constrain the possible architectural principles is not enough. 
We must, at the same time, propose and evaluate practically 
implementable mechanisms that could, in the right 
combinations, bring about the kind of computations that 
might produce the range of representative behaviors thus 
identified. One stands out as being especially interesting in 
this respect: self-inspection, also called reflection.  

5 Which Methodology: Cognitive Growth 
We now turn to our last topic in answering the question 
“which methodology?”: Reflection and cognitive growth.  

The ability to deal with new and unforeseen tasks, 
environments, and situations, is central to the notion of 
intelligence. As we have discussed, to achieve such 
generality it is not sufficient for a system to be pre-
programmed for particular task, environment, or domain – 
more general principles must be involved. One feature of 
natural intelligence that seems likely to matter for broad 
generality is cognitive growth—the active development of 
the cognitive mechanisms themselves, as the system adapts 
and learns to deal with a new tasks, circumstances, or 
environments. Cognitive growth calls for the system 
programming/re-programming parts of itself, which in turn 
calls for some form of reflection—the ability of the system to 
inspect and evaluate itself, to assess the development course 
it is on, to reason about which ways are more likely to put it 
on a desired path of growth than others, and so on. If we want 
an autonomous system, such self-programming must be 
largely self-organizing to enable a system to adapt to 
challenges unforeseen by the system’s designer. Sure, every 
system needs of course some fundamental basic principles of 
operation that are protected from self-re-programming, 
otherwise the system's course of cognitive development 
would be completely unpredictable.  

In nature, a system capable of cognitive growth must 
ensure that some core cognitive control mechanisms are 
stable enough to guarantee survival of the species, if not the 
individual. In artificial systems this principle of a protected 
core is valid as well, but has a slightly different purpose: The 
core control principles of engineered systems are there to 
enable the system's designers to guarantee predictability, at 
some given level of abstraction, of the system's behavior 
throughout its lifetime. 

Central to our discussion here is the hypothesis that 
cognitive growth cannot occur without some transparency of 
a system's operational semantics  [Thórisson & Nivel, 2009] 
[Thórisson 2012]. Such transparency allows the system itself 
to inspect its development to e.g. correctly bootstrap its own 
growth, and re-program itself throughout its lifetime for new 
tasks, scenarios, and environments. A system with 
transparent operational semantics has one of the necessary 
conditions to re-program itself; such a system is in principle 
reflective-prepared. To leverage the reflectivity it must also 
have control of the necessary processes to make use of it. 
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Another necessary feature to support cognitive growth is 
auto-catalytic knowledge acquisition—the ability of the 
system to acquire needed knowledge autonomously; auto-
catalysis and reflectivity are thus necessary architectural 
principles for supporting cognitive growth. Thirdly, such 
systems cannot rely on a system designer to tweak them in 
light of unexpected tasks, situations, or environments, 
meaning that the system must be endogenous – free from 
direct re-programming from the outside. These are important 
enough for us refer to them with an acronym, AER.  

FIG. 2. The Constructivist AI Methodology (CAIM) puts the 
nature of self-constructive systems in the foreground, helping 
the system designer to think about intelligence less like a hand-
crafted artificial machine (top) and more like a complex 
growing, developing, self-organizing system like a forest 
(middle) [Thórisson, 2012]. This helps elucidate what kinds of 
tools are appropriate for the task (bottom).   
 
Humans are most certainly capable of adapting to new tasks, 
situations, and environments, and of course we should take 
inspiration from nature, as natural intelligence, in the very 
least human intelligence, meets the requirement of being 
auto-catalytic, reflective, and endogenous, and cognitive 
growth is a fact of human learning and mental development. 
We humans have an information network to help us bootstrap 
our cognitive operation – referred to as parents, school, 

society, etc. Without these, especially the first one, human 
intelligence is unlikely to bootstrap itself successfully.  

6 Self-Constructive Cumulative Learners 
We have now reviewed some arguments for why current 
methodologies, which we can characterize more or less as 
constructionist, are insufficient to develop truly atuonomous 
general learning machines. The preceding sections all lead to 
the same conclusion: That a defining feature of generality and 
autonomy is the ability for an intelligent system to manage – 
control – its environment, itself, and its own cognitive 
growth: A system’s general learning mechanism – if it really 
is general – should be applicable to the system’s own 
cognitive system. To build such systems requires a different 
methodology than what has been most widely used to date. 
The preceding pages have also addressed aspects that provide 
a foundation for a new methodology. In light of the AER 
requirements to achieve continuous cumulative learning, 
domain-independence, self-construction, and autonomy, we 
seek a methodology that can help us think more along the 
lines of growth and development than manual construction. 
To paint a caricature, we want to think of autonomous 
cumulative learners not as machines that must be built brick 
by brick, bolt by bolt, and line by line, but like a garden or 
forest whose growth must be nurtured—a methodology for 
self-constructive systems  (FIG. 2).  

 A process of learning entails that as a system S becomes 
better at achieving a goal g in one or more task-environments 
{e1 ... en | e ∈ E} trough experience, where “better” is 
measured in some relevant way such as the appropriateness 
of a proposed or executed solution, the speed at which it is 
produced or executed, and/or its quality. With experience the 
system may be able to achieve g, and over time it achieves it 
increasingly reliably through particular mental operations, 
through available sensors and actuators, which we will call 
tasks T1. If tasks T1 are performed only using its basic/atomic 
control methods – those provided to it by its designers at the 
outset – it is likely that by improving the control structures 
themselves – adapting them to the particulars of T1 – would 
improve performance on tasks T1. It is also possible that S 
may produce some modification of T that, given some 
modification of some set of overt and covert control 
mechanisms, CS, would improve performance on T1, or 
potentially enable a set of new tasks T2 that achieve g even 
better according to the chosen evaluation criteria. Adapting 
CS would mean producing a new or modified set of control 
mechanisms that the system was not provided with from the 
outset, whose form and function is based on the system's 
experience, and may partly or fully replace the existing CS. 
This requires some form of self-programming [Nivel & 
Thórisson, 2009, Thórisson et al. 2012]. 

Self-programming, in the sense of a cognitive system re-
designing and re-implementing parts or full sets of its own 
cognitive functions, and especially repeated such operations 
– recursive self-improvement – requires models of self 
[Steunebrink et al. 2016]. As a controller of controllers, such 
self-programming calls for a meta-controller whose target 
modeling task is the system itself in its domain. The same 
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rules apply to the meta-controller as to the lower-level 
controller: It must obtain a model (or models) of its domain 
and use it to propose, test, and implement new (and/or 
modified) cognitive functions that partially or fully replace 
those that were used before. In addition, should the 
environment change, such modifications need to be 
accompanied by methods for the system to identify when 
situations call for a reverting or switching between alternative 
ways of operating, for instance if the task or environment 
changes in ways that make the new methods less effective or 
inappropriate for the kinds of bootstrapping that may need to 
happen to handle new situations. 

7 Conclusions & Future Work 
It would seem clear that even if only half of the topics 
discussed in this paper were relevant and important for 
achieving general intelligence in a machine, a thorough 
revision of current methodologies offered by computer 
science and AI would be in order. Together, the arguments 
strongly favor a different approach to the one presented by all 
standard software development methodologies, as these take 
a human-centric approach where the human designer is 
responsible for turning a task definition into task-specific 
algorithms, with little or no serious consideration for bringing 
autonomy to the system being designed. As a methodology 
for standard software projects this makes perfect sense; as a 
methodology for developing autonomous generally 
intelligent machines this presents a serious mismatch 
between the target system and the approach to its design. 

We have done some work along the lines of considering 
what a more appropriate methodology might lok like; the 
Constructivist AI Methodology (CAIM) targets the nature of 
general intelligence and autonomy, with an emphasis on self-
construction through cumulative learning based on modeling 
causal relations. We propose a set of assumptions – which, 
just like the central thesis of AER – are scientific refutable 
hypotheses. Details on these can be found in [Thórisson 
2012], [Nivel et al. 2013], [Nivel et al., 2014a] and [Nivel et 
al., 2014b]. While this takes some steps in the right direction, 
plenty of work is neede on which methodologies can help us 
get more quickly the results we are interested in: machines 
with autonomy and general intelligence.  
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