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Executive Summary

Social phenomena represent a complex subject for scientific study due to the inherent
complexities of human behavior, societal structures, and community dynamics. Such
interplay is often multifaceted, exhibiting stochastic properties, and consequently making
their modeling and replicability particularly challenging and resource-intensive, if not
unfeasible.

The SocialInsight framework introduces a state-of-the-art approach to the design and
evaluation of social intervention programs. The framework integrates advanced computa-
tion models and methodologies, resting on knowledge from across a range of disciplines
within the social and life sciences, to supercharge how social programs and policies are
created, studied and implemented, by governmental and academic institutions.

A key innovation of this framework is the transparency and management of exten-
sible, scalable agent-based models that can dynamically adapt to new data and insights
about the intricate, multifaceted real-world phenomena they represent. This adaptability
is crucial in the realm of public policy and social programming, where understanding the
nuanced interplay of sociological, psychological, and environmental factors is essential.

Underpinning SocialInsight is the combination of empirical research and advanced
technical methodologies. The framework rests on the LIFECOURSE research results, a
longitudinal study over 20 years of the effectiveness of youth substance abuse preven-
tion programs. This foundation supports the scientific study of causal links influencing
adolescent behaviour, as well as tailored approaches to intervening on such behavior at
multiple levels, across a diverse range of contexts. An agent-based modeling framework,
unified with an ontological content management, allows scientists and policy makers
to keep track of much more complex systems than before. The framework is the key
to more powerful multidisciplinary collaboration, fostering a broader and more unified
understanding of human social behaviors, allowing policymakers and researchers to eval-
uate proposed social policies before their actual implementation.

The anticipated benefits of SocialInsight include bolstering the effectiveness of pro-
gram and policy implementation, reducing associated costs and risks, and fast-tracking
the pipeline between policy development and implementation. This report details the
technological underpinnings of SocialInsight, as well as its ontological infrastructure,
emphasizing the importance of a robust and flexible ontology system that can handle the
complexity and variability inherent in modeling social systems.

The full scope of the project will involve improvements on all fronts of this proof-
of-concept prototype, including scientific modeling, simulation comparison and man-
agement, collaboration features for distributed teams, and deeper analysis and modeling
tools. In the closer future the project will focus on fine-tuning and increasing the scope
of this proof-of-concept, expanding its capability to include a broader range of social
phenomena, as well as continuing to bridge the gap between theoretical research and
practical policy implementation. A graphical user interface for the numerous levels of
use and system function must be developed.

This work was made possible in part by funding from the European Union, Reykjavik
University and the Icelandic Institute for Intelligent Machines.
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1 Introduction

This report describes the SocialInsight framework,1 part of the SIMLife project at Reyk-
javik University and IIIM, that aims to bring to maturity a new computational framework
and methodological approach for answering practical questions about the design and im-
plementation of social intervention programs. The project represents a paradigm shift in
the study and development of social programs and policies for both governmental and
academic institutions.

The SocialInsight software2 brings new tools for transdisciplinary collaboration across
several fields of theoretical research, allowing experts in psychology, biology and sociol-
ogy to work together to build deeper and broader models of human social behavior, and
lays the groundwork for policymakers to be able to develop and evaluate policies before
they are implemented, increasing speed and transparency of complex policy design while
reducing associated risk and cost.

SocialInsight sits on two main pillars. Firstly, the LIFECOURSE research provides
a theoretical foundation for the focus domain – substance abuse – resting on decades
of data about the effectiveness of various intervention programs in a variety of social
environments. By revealing the causal links between key factors that influence adoles-
cent behavior with respect to substance consumption, a foundation is laid for an explicit
computational approach that can be used to drive simulations of social mechanisms.

Secondly, SocialInsight adopts a modern approach to agent-based modeling and sim-
ulation (Abar et al., 2017; Bonabeau, 2002; da Silva, 2023; Thórisson et al., 2009;
Thórisson et al., 2016), ontological knowledge networks (Livet et al., 2008; Phan et al.,
2010) and causal-chain analysis (Baumann et al., 2020; Halpern & Pearl, 2013; Peters et
al., 2020) to produce transparent, explainable models that expose theoretical mechanisms
behind population dynamics and human behavior. The framework is organized around a
comprehensive ontology management system (Thórisson et al., 2010) that captures both
the topic domain and the computational constructs in a unified manner, enabling collab-
oration that spans several disciplines.

SocialInsight will allow improved development and testing of social policies and
tactical initiatives prior to their launch, providing a unified scientific framework based on
the best available data and expert knowledge, thus reducing their cost, uncertainty, and
time-to-launch.

The SIMLife project will supercharge prior efforts and results in substance abuse pre-
vention, modernizing existing development methods and knowledge and bring them into
the 21st century. The work has potential to significantly impact three distinct domains:
(a) Scientific research and social modeling, (b) public policy making and evaluation, and
(c) social science education.

1This work is funded in part by the European Union ERC Proof-of-Concept grant LIFECOURSE-ABM
(#101069400).

2The software is released under an open-source license (share-alike Creative Commons).
https://github.com/IIIM-IS/SocialInsight-ABMS-SimulationOfSocialSystems – accessed Oct. 23, 2023.
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2 LIFECOURSE

For decades scholars have been calling for a multilevel analysis of the bio-psycho-social
nature of risk and protection of adolescent health and behavior (Kristjansson et al., 2010;
Sigfusdottir et al., 2004). To do so, key information needed to be integrated so that
uniform concepts could be established. Starting in 2015, the LIFECOURSE project3

presented the world’s first solution to this problem (Thorisdottir et al., 2020).4 LIFE-
COURSE was the first study to include both refined measurements of environmental
influences and sophisticated measurement of biological processes. Studies of early-life
stress, in relation to the social environment and human biology, were conducted in disci-
plinary isolation. Before LIFECOURSE, much of the pre-existing knowledge had been
segregated into separate disciplines, creating disciplinary silos. With LIFECOURSE this
knowledge segregation was removed. LIFECOURSE presented a new comprehensive
approach to address the influence of stress on adolescent behaviors, including substance
use, suicidal behaviour, self-harm, and delinquency.

Since its launch, LIFECOURSE has resulted in multiple cross-disciplinary collabo-
rations, and numerous questions have already been answered about the stress-behavior
pathways and the role of the mediators and moderators in these relationships. The work
models the nature of the bio-social link between stress, emotions, and behavior; the me-
diating and moderating effects of multiple environmental factors during specific develop-
mental periods, whether these effects are cumulative across periods, and finally, whether
these effects could be protected against or even reversed. The implications of LIFE-
COURSE are unprecedented, generating completely new knowledge about the bio-social
pathways to adolescent behaviors across multiple disciplines, merging them into one.

3 Related Work

We consider related work in two main topics: Agent-based models and simulations, on
the one hand, and ontological research on the other. The last section reviews work on
their combination.

3.1 Agent-Based Modeling & Simulation

ABM applications have been used in various fields, including biology, psychology, so-
ciology, and cross-disciplinary studies. Beheshti and Sukthankar (2014) developed an
agent-based model to examine the influence of social norms and various interventions
on smoking cessation trends. The authors structure their agents around three distinct
classes of factors influencing smoking behavior: personal-values, social-networks, and

3Funded in part by a C2 million European Research Council Consolidator grant.
4The LIFECOURSE team is lead by Dr. Sigfúsdóttir and includes researchers at Reykjavik Univer-

sity’s (RU) Dep. of Psych. and Dep. of Comp. Sci., the Icelandic Centre for Social Research and Analysis
(ICSRA), and several overseas collaborators at King’s College (UK), Columbia University (US), and else-
where (Kristjansson et al., 2021; Kristjansson et al., 2010; Kristjansson et al., 2013; Sigfusdottir et al.,
2004; Sigfúsdóttir et al., 2009).
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environmental-influences. Personal-values are specific to individuals and based on per-
sonality traits. Two of these values are derived from Schwartz’s sociological theory of
cultural value orientation (Schwartz, 2006), assessing an agent’s susceptibility to feed-
back from others (embeddedness vs. autonomy) and their level of ambition, daring, and
assertiveness (mastery vs. harmony). Other values considered at the personal level in-
cluded regret in the context of smoking and addiction, concern for their health, and
their propensity to seek pleasure. Social-networks follow the power law degree distribu-
tion wherein a small number of nodes, referred to as hubs, possess a disproportionately
large number of connections, while the majority of nodes maintain relatively few connec-
tions. They also exhibit homophily characteristics, a sociological concept suggesting that
nodes sharing similarities tend to gravitate towards one another. Environmental-factors
influencing social networks can be classified into four categories: (1) exposure to the be-
haviors of others, (2) presence of signs or posters, (3) advertising, and (4) miscellaneous
factors encompassing digital, educational, and promotional activities.

A more recent simulation model for New York City proposed to explore the relation-
ship between alcohol outlet density and alcohol-related violence (Castillo-Carniglia et al.,
2019). The model was designed to incorporate demographic characteristics, such as age,
sex, and race, as well as behavioral factors, such as drinking status and geographic prox-
imity to outlets. The drinking status of the simulated population was determined based on
a combination of sociodemographic and neighborhood-level factors. The primary aim of
the model was to evaluate the impact of targeted intervention strategies, aimed at reduc-
ing alcohol outlet density, on rates of alcohol-related violence. Specifically, the model
explored scenarios in which overall alcohol density was capped or specific outlets asso-
ciated with high levels of violence were targeted for control measures. The authors use
ABMs to simulate various scenarios and interventions, analyzing their effects on smok-
ing cessation trends over time, conducting a sensitivity analysis to explore the impact
of different parametrization on the outcome. The model provides valuable insights into
the interplay of various factors influencing smoking behavior, it shares a limitation with
Scwartz’ (2006) alcohol outlet density model: Both models fail to account for a num-
ber of factors relevant in the study of substance use intervention. Modifying the existing
model to include additional factors would likely require resource-intensive re-structuring.
Although the work provides many valuable insights, the authors acknowledged that the
model did not fully account for the complex interplay of psychological, biological, and
social factors that are known to play a part in alcohol consumption behaviors. While a
limitation of the particular implementation and not the methodology per se – in fact, quite
the contrary – it is common to see limitations along this dimension in many agent-based
modeling implementations targeting cross-disciplinary phenomena.

A number of other models produced recently are subject to this limitation (Bobashev
et al., 2018; Dray et al., 2008; Stankov et al., 2019) and while ABMs offer a promis-
ing approach for investigating complex topics, incorporating a comprehensive range of
variables and interactions between agents remains a challenging endeavor. A multidis-
ciplinary approach drawing on expertise from diverse fields is needed to advance the
modeling process and enhance its accuracy and applicability. New methodologies are
needed to address the numerous challenges such work faces.
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Various toolkits have emerged in recent years that aim to simplify the implementation
of agent-based models by enabling programmers to avoid developing mechanisms from
scratch. These frameworks include popular toolkits such as Netlogo (Tisue & Wilensky,
2004), Swarm (Minar et al., 1996), Mason (Luke et al., 2004), and others. These toolkits
were developed to cater to the diverse range of applications of agent-based models, with
some targeting non-human structures such as bacterial populations, infrastructures, and
information systems, while others focus on social and human phenomena such as the
financial market, healthcare systems, and epidemics.

The Netlogo toolkit has been employed for developing two distinct models that focus
on substance use, namely SimArc (Lamy et al., 2011) and SimUse (Lamy et al., 2015).
Both models were developed by the same authors and consider the topics of alcohol
abuse, and the trajectories of recreational poly-drug users, respectively. Notably, these
models share a commonality not only in their focus on substance use but also in their con-
sideration of the interplay between neuroscience and substance use. Although SimArc
and SimUse are distinct models, they exhibit some degree of conceptual overlap in the
constructs they aim to define. It is worthy to note that these models remain entirely dis-
connected from each other. One of the current challenges in implementing agent-based
models using toolkits is the disconnection of models that exhibit overlapping constructs.
In the context of social science models, the interplay of social interactions is a shared
mechanism that is relatively consistent across various substances. Therefore, there is
a need to explore avenues for integrating these shared mechanisms in order to develop
more comprehensive and robust models.

The design methodology of ABMs may vary in the process; however, a critical as-
pect for achieving a satisfactory outcome is the collaboration with domain experts in the
field of study being simulated. Generally, these experts are responsible for decompos-
ing the underlying rules and principles of the system, thereby facilitating their transla-
tion into a computer-based model. This collaborative process often concludes once the
model has been sufficiently refined, verified, and deemed to represent the phenomenon
adequately. However, as previously noted, a primary limitation of this approach is the
potential longevity deficit for the modeling solution, particularly in light of new infor-
mation and insights in the models replicated. This constraint highlights the importance
of incorporating model adaptability and extensibility mechanisms to ensure the com-
putational representation’s ongoing relevance and applicability. We propose separating
phenomenon representation and model implementation to achieve adaptability and ex-
tensibility by using ontologies as input into the ABM framework.

3.2 Ontologies

Ontologies pertain to the formalization of a particular domain of interest, serving as a
means to represent entities, properties, and interrelations. Ontology components can be
categorized into classes, individuals, attributes, and relations. For example, Fluffy (Indi-
vidual) is a type of Dog (Class) with brown fur and blue eyes (attributes) and is owned by
(Relation) Jim (Individual). Domain representation through ontologies, using an appro-
priate syntax for structuring the information, yields a multitude of benefits, including (1)
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providing a shared foundation for discourse among individuals with diverse backgrounds
and perspectives; (2) offering extensive standalone functionality while enabling compat-
ibility with various systems; (3) facilitating the identification of required components for
the development of new systems; and (4) ensuring that as the ontology expands, its re-
liability is bolstered, granted that newly incorporated elements do not compromise the
existing structural integrity (Uschold & Gruninger, 1996).

Ontologies are typically separated into two parts: The upper ontology and the domain-
specific part. The first refers to a model of high-level, general-level descriptive terms, the
terms required to represent one or many domain concepts. The latter is a model of a
specific domain of the world, utilizing the components mentioned above and others to
describe knowledge. In some instances, particular domains may require the design of an
upper ontology before being properly able to implement the domain-specific one (Chan-
drasekaran et al., 1999).The limitations of the ABMs discussed previously concern the
development of a modular and adaptive tool where new knowledge is easily incorporated
into the ABM. A potential pathway to achieve this is through ontologies, incorporating
separately domain-specific knowledge, and using the ontology as input into an ABM
framework.

The Resource Description Framework (RDF) is a widely-used standard for represent-
ing and exchanging ontology information on the Web in a serialized format. The RDF
is based on a model of the world in which everything is represented as a “resource”, and
relationships between resources are described using a set of triples, which consist of a
subject, predicate, and object. In the RDF, resources are identified by Uniform Resource
Identifiers (URIs), which provide a globally unique identifier for each resource. Relation-
ships between resources are represented using predicates, which are also identified using
URIs, and whose function is to describe the nature of the relationship between the subject
and object of a triple. The RDF enables the encoding and reuse of structured metadata,
providing a means for publishing both human-readable and machine-processable vocab-
ularies designed to encourage the reuse and extension of metadata semantics among dis-
parate information communities (Miller, 1998).

3.3 Substance-Use Ontologies

Ontologies exist on the domain of substances and substance use, and taking on differ-
ent representational approaches, the main themes being the hierarchical classification of
drugs, their ingredients, as well as their chemical, therapeutical, and addictive proper-
ties (Brown et al., 2004; Chen et al., 2012; Hanna et al., 2013; Lipscomb, 2000). As
the primary objective for developing an ontology is to promote reusability, these ontolo-
gies were reviewed with the objective of researching their applicability in the context of
ABM. As a result, the applicability of these ontologies for our specific purpose is consid-
ered limited, given that substantial restructuring would be necessary to employ them in
our context. Nevertheless, they may prove to be valuable references for future endeavors
aimed at enhancing the domain-specific ontology proposed in this thesis.

An example of a valuable reference for the upper ontology includes the Descriptive
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Ontology for Linguistic and Cognitive Engineering (DOLCE).5 Developed by the Lab-
oratory for Applied Ontology (LOA) at the Institute for Cognitive Sciences and Tech-
nologies of the Italian National Research Council (CNR), DOLCE aims to facilitate the
integration, interoperability, and reusability of domain-specific ontologies by offering a
foundational vocabulary and structure (Borgo et al., 2022). DOLCE captures fundamen-
tal components to human cognition and language, while remaining as neutral as possible,
by deriving most of its structure and components from philosophy and linguistics, with
respect to specific domain theories. Our approach and DOLCE share similarities in the
upper ontologies they propose, that is, in the abstraction from domain-specific theories.
While DOLCE attempts to remain exempt from any human theory, our framework’s goal
is to remain as neutral from any human social phenomenon to be represented as possible.
This is achieved by describing general terms that can represent a large number of social
theories in the agent-based model space.

3.4 Combining Ontologies & Agent-based Models

A review of the main techniques, methodologies, and applications of agent-based sys-
tems in the context of ontology alignment and semantic interoperability is given by Davi-
dovsky et al. (2012). The authors provide a good overview of the key advantages, such
as the potential for increased adaptability, scalability, and robustness.

Socio-ecological systems (SeS) share similarities with the domain of susbtance use,
as both encompass multiple disciplines and are well suited for the application of ontolo-
gies in structural modeling and in conjunction with ABMs, as suggested in a recent paper
by Gotts et al. (2019). The authors propose the use of four distinct ontologies: System,
model, project, and representation. These ontologies are designed to bridge the concepts
of ABMs and the conceptual representation of a domain of discourse, which is similar
to our approach. Additionally, we incorporate ideas from Thórisson et al. (2016) , who
proposed the separation of expert-level ontologies from user-level ontologies; a combi-
nation of version-control and meta-ontologies to keep track of the evolution and drift of
sub-ontologies.

Our system ontology is designed to capture entities, relationships, and processes
present in a specific part of the world, drawing upon defined terms from the project
ontology. The model ontology is intended to capture the different models considered for
the same system at different levels of detail, or distinct perspectives.

The primary distinction between the approach proposed by e.g. Gotts et al. (2019) and
our own lies in the number and combination of ontologies employed. In our approach, a
separate ontology is used for the domain of discourse and its models, and another for the
representation of ABM-related concepts.6

While there have been other papers on the topic of ontology and ABM integration,
very few implementations of proposed approaches exist. In one of these implementations,

5See http://www.loa.istc.cnr.it/dolce/overview.html – accessed Oct. 25th, 2023.
6Future versions may represent mechanisms separately from these, which would lead to the emergence

of additional ontologies. However, our current ontology approach adopts a depth-first strategy, which prior-
itizes the development of comprehensive encompassing ontologies.
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the authors put forth an ontology-based approach to tackle the challenges associated with
reusability, interoperability, and expressiveness in the domain of ABMs (Christley et al.,
2004). The proposed ontology encompasses fundamental components such as agents,
environments, processes, and parameters, aiming to offer a standardized and structured
representation of the concepts, relationships, and processes inherent in ABMs. While
the authors underscore the potential of ontologies in facilitating the development of mod-
els and simulations, a significant distinction between their approach and ours lies in our
objective to facilitate collaboration with domain experts. Consequently, the ontology’s
structure must strike a balance between simplicity and comprehensibility while effec-
tively representing the necessary concepts in an ABM.

4 SocialInsight: Requirements

Based on the review of existing techniques and taking into account the problems to be
addressed, the following list of requirements was devised for the long-term vision of the
proposed approach (in order of importance):

1. Empower domain experts researching complex (social) systems to focus on
subsets of their research without losing sight of or abandoning its relationship
with its superset, including the larger context and variables. This includes:

(a) Promoting the reuse of mechanisms intrinsic to the study of various
dependent variables, independent of the phenomenon under consideration.

(b) Facilitating modifications to the factors considered in the simulation and
their representation within the agent-based model (ABM), ensuring
adaptability to evolving domain knowledge.

2. Enable system improvements (e.g. scalability, decentralization, communications)
without interfering with domain-specific knowledge and representation.

3. Ensure a seamless and transparent translation of domain concepts to their
corresponding representations in the ABM.

4. Give domain experts a new framework and tool for working on complex models
of social phenomena, including

(a) those with minimal knowledge of ABMs,
(b) allow anyone, from novice to expert, to easily incorporate both hypothetical

and empirical information pertaining to the target phenomenon,
(c) provide a platform with the potential to produce a comprehensible

visualization of domain information, and
(d) minimize the learning curve for domain-experts to understand how their

models of the world are employed within the tool.

To fulfill these requirements, modularity, adaptability, and expandability must be consid-
ered at various levels of detail. It is imperative that not only does the ABM itself exhibit
these characteristics; the overall tool must embody these principles.
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4.1 Ontology

As previously mentioned, ontologies can serve as valuable instruments in formalizing a
specific domain of interest, providing a means to represent entities, properties, and in-
terrelations, encouraging reuse and extension of knowledge represented among disparate
information communities. They are well suited for the module responsible for describing
a phenomenon; however, current ontological frameworks offer only a general nomencla-
ture for representing a domain, such as classes, instances, properties, and interrelations.
To depict a domain in the context of ABM, a structure tailored to accommodate ABM
components is required; this would involve an upper ontology encompassing the defini-
tion of agents, environments, parameters, perceptions, decisions, actions, as well as their
interplay.

With the addition of the upper ontology, the final designated modules in the approach
are: (1) An upper ontology describing general terms encapsulating the components of an
ABM; (2) a domain-specific ontology describing the phenomenon to simulate using the
general terms from the upper-ontology; (3) an ABM framework that utilises the domain
information and executes a simulation given pre-defined settings.

4.2 Agent-Based Framework

For the ABM framework to be capable of simulating the information in the domain-
specific ontology, it needs (a) a component that parses information from the ontology,
(b) a component that initializes agents required to run the simulation given that informa-
tion and initialisation settings such as population demographics and other statistics, (c) a
component that controls and executes the simulation.

A significant drawback of current ABM implementations is the manner in which
models are adjusted in light of new information on the phenomenon of study. Rigid rep-
resentations make such changes often too expensive or unfeasible, rendering the original
model entirely obsolete. To improve the longevity of models and ease collaboration with
experts, we integrate ontologies to keep track of all concepts, including modeling agents
(simulation modules), factors, and interactions. Our approach to ontology construction
and use is meant to ensure that the target phenomenon representation is separate from the
model implemented, significantly increasing the longevity and flexibility of construction.

4.3 Scenarios

Through an analysis of the LIFECOURSE research project (see Section 2 above; Krist-
jansson et al., 2010; Sigfusdottir et al., 2004; Sigfúsdóttir et al., 2009; Thorisdottir et
al., 2023) and consultation with domain experts, we identified a variety of sufficiently
general target scenarios to simulate. While the data encompasses a wide array of depen-
dent and independent variables, and their respective interactions, the central dependent
variable we focus on in SocialImpact is of course substance use.

The identified scenarios include:
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Figure 1: Ontologies, catego-
rized into upper-level ontology
and lower domain-specific on-
tology, serve as structured data
repositories. The Ontology Edi-
tor/Interface acts as a mediator al-
lowing users to tweak and commu-
nicate with these ontologies. The
ABM Framework (Agent-Based
Modeling framework), is the core
simulation executor. Both the Ex-
periment Creation Interface and
the Output Interface are intrinsic
parts of this framework, guiding
users from experiment setup to re-
sult visualization.

1. Substance consumption, as the primary focus of the subject matter is substance
use, the modeling of this core activity was a requirement.

2. Routines and commitments, chosen due to their association with delinquent behav-
ior and the increased propensity for drug use.

3. Protective and risk factors, of varying importance, depending on the factors in-
cluded, e.g. in the inclusion of both parental monitoring and support (the first has
a stronger impact as a protective factor).

4. The effects of peer activities on individual behavior, this scenarios should tar-
get cases in which the perception of certain events or messages can directly af-
fect an individual’s propensity (eagerness or hesitancy) to perform some actions
(e.g. yielding to peer pressure, resisting bullying, etc.).

5. Human plan-making. Individuals must be able to decide to make an action avail-
able when an opportunity arises, e.g. deciding to smoke when a cigarette becomes
available. The scenarios must be sufficiently represented in several ways in the
domain-specific ontology, using concepts from the upper ontology.

4.4 Ontology Interface

A graphical user interface (GUI) displays ontologies as node graphs, each node repre-
senting a unique entity, property, or relationship within the ontology. Users can click on
a node to reveal an editing pane where they can modify attributes or add annotations.
A Natural Language Processing (NLP) engine (or LLM) can be embedded into the GUI
to interpret and convert textual inputs into changes in the ontology. For instance, if a
scientist types “Add a relationship between X and Y” the NLP engine translates this into
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a new edge between nodes X and Y in the graph.

Figure 2: The graphical user interface (GUI) serves as a visual platform to display on-
tologies in the form of node graphs. Each Node Graph illustrates the ontologies and
their relationships. Users can utilize the NLP Engine to transform textual descriptions
into ontology modifications. To modify attributes or provide additional context, the Edit-
ing Pane and Annotations come into play. The Ontology holds structured information
which can be broadly categorized into Upper-level Ontology and Domain-specific On-
tology based on their specificity.

4.5 Interfacing Mechanism for Experiment Creation

An extension module within the GUI allows transitions from ontology editing to exper-
iment creation. This module features an interface populated with policy templates that
represent agent types, environment parameters, and interaction rules. These blocks are
standardized but can be customized through editable fields. The interface allows users to
create a simulation scenario by adding, removing and changing parameter values, essen-
tially creating a storyboard for the simulation.

4.6 Layers of Abstraction

Users can switch between different layers of abstraction in both the ontology editor and
the experiment creation interface. A toggle that lets users switch from a detailed view to
an abstract view is available, where in the abstract view a complex set of interactions is
represented as a single, editable “black box” component. As researchers gather more data
or insights, they can revert to the detailed view to edit the internals of the “black box”
component, but its specificity is not a requirement for simulating an environment.
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Figure 3: For initiating simulations, the Data Input section allows users to define starting
conditions. The Base Environment Definition outlines the foundational environment
attributes of the experiment. The Risk-Protective Factors help in identifying variables
either as protective measures or potential risks. Users can introduce data through CSV
Upload or real-time API Connection. The system’s performance is monitored and ad-
justed through metrics like relaying compute resources. Within the risk domain, vari-
ables can be distinctly marked as Protective Factor or Risk Factor.

4.7 Output Interface

The output consists of a dashboard that displays real-time outputs of the simulation.
Data visualization techniques are used to create dynamic graphs and heat maps, as well
as statistical models that essentially report on the state of the simulated environment.
The dashboard is interactive, enabling users to pause the simulation, modify parameters
directly within the dashboard, and then continue the simulation. This allows for iterative
modeling without requiring the user to be familiar with programming.

Figure 4: The Dashboard offers real-time outputs of the ongoing simulations. Under
the Data Output umbrella, users can anticipate results in varied formats, one of which
includes Real-time Graphs and Heat Maps. Furthermore, the system offers Interactive
Controls for on-the-fly simulation modifications. Data can be represented in formats
such as CSV and JSON.
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4.8 Level of Analysis and Experimentation

Users are allowed to specify the granularity of data capture and analysis. This could range
from high-level outputs like population trends down to micro-level data on individual
agent actions. This feature is accessible both during the experiment setup phase and in
the output interface.

4.9 Data Input

The data input module supports multiple formats. Users are able to input initial data
conditions through a form-based interface, upload CSV files, or connect to an API for
real-time data retrieval. A parser is available to convert this data into a format that can
populate the initial conditions of the simulation.

4.10 Risk-Protective Factors in the Framework

Handling Risk-Protective Factors within the experiment creation interface enables users
to specify variables that are recognized as protective or risk factors in the context of
the simulation. For example, in a public health simulation, "vaccination rate" can be
identified as a protective factor, while "population density" can be a risk factor for disease
spread.

The module presents users with a table-like interface where each row represents a
different variable in the simulation. Next to each variable, a checkbox provides options
to mark it as either a "Protective Factor " or a "Risk Factor". The table has additional
columns where users can input numerical values or ranges that define the threshold levels
for each factor.

Risk-Protective Factors Module

Once these factors are identified and their thresholds set, the framework automatically
tags them within the simulation logic. During the simulation run, if a protective or risk
factor crosses its defined threshold, an event trigger may be activated. This event trigger
can generate alerts or modify other variables in the simulation.

Exportable Data

The data pertaining to these risk-protected factors is made easily exportable for further
analysis. It is possible to download this data in various formats like CSV or JSON.

4.11 Scenario Templates

Scenario Templates provide structured starting points for creating experiments; they are
designed by domain experts to encompass key variables and mechanisms often consid-
ered in specific types of social science or policy research.
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Parameter Sliders

Upon selecting a template, the Parameter Sliders section appears with sliders and input
fields for adjusting key variables in the template, offering a tactile and visually intuitive
way to manipulate numerical parameters.

Property Editor

The Property Editor allows users to fine-tune parameters, providing contextual informa-
tion and advanced settings.

4.12 Validation and Scenario Preview

Before script generation, the system conducts a validation check to ensure that all manda-
tory fields are populated and that templates have consistent parameters with real values.

Saving and Loading Scenarios

Users can save their workspace configurations for future use. The configurations are
saved in an XML format, and a “Load Configuration” option allows users to upload a
previously saved workspace.

4.13 Detailed System Description for Scenario Design and Parameter Con-
trol

Objectives

• Enable complex experiments in social sciences and policy analysis.
• Support variables with multi-level dependencies.

Functional Components

1. Scenario Templates: Predefined domain-specific templates.
2. Parameter Sliders: Manipulation controls for variables.
3. Variable Editor: Interface for adding and defining variables.
4. Validation & Dependencies Check: Ensures logical consistency.
5. Preview Scenario: Pre-execution review of the setup.
6. Scenario Outcomes: Real-time visualization and metrics.

Templates contain:

• Obligatory Independent Variables
• Base Environment Property
• Hypothesized Dependent Variables
• Initial Relationships
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Parameter Sliders

Each obligatory independent variable has an associated slider. Features include manual
setting, automatic setting based on historical data, and constraints.

Variable Editor

Capabilities include adding variables, defining relationships, and specifying whether
variables are independent or dependent.

4.14 Example

Considering a policy experiment about ‘Educational Outcomes’ set in a ‘School’ envi-
ronment, with base environment and variables defined alongside specified correlations,
the system can generate scenarios that model these correlations and validate these hy-
potheses through automated metrics and validation techniques.

• Base Environment: School
• Variables: ‘Teacher Quality,’ ‘Student Engagement,’ ‘Rate of Learning’
• Correlation: ‘Teacher Quality’ positively correlates with ‘Student Engagement’

(Coefficient = 0.7, Obligatory)
• ‘Student Engagement’ positively correlates with ‘Rate of Learning’ (Coefficient =

0.8, Hypothesized)
By specifying these relationships, the system can generate scenarios that model these
correlations and can validate these hypotheses through automated metrics and validation
techniques.

4.15 Model Verification and Validation

Our approach involves a process for developing ABMs targeting social phenomena at
several levels of detail. The verification, validation, and testing (VV&T) processes of
resulting AMBs must encompass them all, especially with a view on guaranteeing the
longevity and adaptability of any generated simulations.

While ABM VV&T shares certain similarities with ontology VV&T, particularly in
terms of ensuring that the outcome adequately addresses the questions proposed during
the pre-design stage, for ontologies the validation and verification processes are distinct
(Gómez-Pérez et al., 2006).

A VV&T process is required for three distinct parts: (1) upper ontology, (2) domain-
specific ontology, and (3) ABM Framework. The initial iteration of any ontology-driven
design approach concludes with the ABMS framework generating simulation data. Al-
though the subsequent steps involve comparing the simulation data with available empir-
ical data and obtaining expert verification of the simulation outcomes, it is expected that
this often results in unsatisfactory outcomes. In these cases, a social simulation designer
may call for a comprehensive review of the approach and background assumptions, ad-
dressing the following aspects:
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1. Upper ontology: Does the upper ontology encompass the essential concepts to
adequately represent the phenomenon under study? A thorough examination of
the ODD protocol (grimmeEtAl2020) or other model description methods used
is necessary to evaluate the generalization capabilities of the upper ontology con-
cerning the subject matter. It is important to note that should the ontology lack
specific terms to represent a particular effect, the initial assessment should focus
on the model description, as some described mechanisms may be too specific to the
phenomenon and could be alternatively represented through existing mechanisms
represented in the current upper ontology version.
VV&T Method: Taxonomy evaluation through the check of inconsistencies, incom-
pleteness, and redundancies of concepts included in the ontology (Lovrencic &
Cubrilo, 2008), and in comparison with respect to existing ABM components re-
quired to model the phenomenon through the ODD protocol or any other model
descriptions utilized.

2. Domain-specific ontology: Are the theoretical models within the target phenomenon
accurately represented using the most appropriate terms or mechanisms? The rep-
resentation of certain effects using the upper ontology terms warrants a review to
determine if it is the most suitable way to depict the effect or the emergence of an
effect.
VV&T Method: In consultation with domain experts, checking the ontology against
real world representation and language. Consistency checks of similar interactions
and their representations. Sensitivity checks to small changes in definition, ensur-
ing the rest of the representations do not collapse (Lovrencic & Cubrilo, 2008).

3. ABM Framework: Similar to contemporary ABM implementations, the ABM
Framework must be assessed for correctness on multiple levels for its underlying
mechanisms. Should the framework behave as intended, model tuning may be re-
quired to fit the phenomenon and behaviors expected. That is, for the action value
calculated in the decision-making process, the fine-tuning and balancing of action
component importance and values should be addressed.
VV&T Method: Formulation of test cases to evaluate the model based on the se-
quence in which processes are executed. Verification of emergent behavior through
the analysis of observed macro-level outcomes and ensuring these are not pre-
programmed or explicitly defined. Ensuring agent heterogeneity reflected in pop-
ulation demographics and input through the simulation initialization parameters.
Corroborating information flows in a decentralized manner, such that agents and
processes do not rely on a central source for information. Model is robust under
various conditions such as changes in parameters, initial conditions, or agent be-
haviors to assess if the outcome remains consistent with the expect behavior (Balci,
1998).

The proposed VV&T steps (1) and (3) should be conducted whenever new concepts are
introduced to the upper ontology. That is, following the addition of new concepts to the
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ontology, data retrieval and manipulation methods must be added to the ABM before
the new concepts are usable. Step (2) should be carried out in an iterative manner when
representing a social phenomenon, ensuring that the concepts are accurately represented
using the upper ontology concepts. Step (3) should also be conducted when the ABM
framework is being used without any changes to the rest of the components.

4.16 Technological Frameworks

To address the requirements above, technologies are needed for:
• Encoding ontological structures, e.g. Notation3 (N-Triples), Terse RDF Triple Lan-

guage (Turtle), JavaScript Object Notation for Linked Data (JSON-LD), and Re-
source Description Framework/XML (RDF/XML).

• Faciliating the extraction of pertinent information from the ontologies, through
query languages like RDF Query Language (RQL), SeRQL, Triple, and SPARQL.

• Storing and visualize the ontologies for example through graph database systems
like GraphDB, Neo4J, and Titan-Cassandra.

• Programming the ABM framework, predicated on the established efficacy needed
for this domain. Most commonly utilized languages include Python, C++, and
Java.

• Facilitating the parsing and effective use of the ontologies developed and compat-
ible with the programming language chosen, such as RDFLib for Python, Raptor
RDF Syntax Library for C++, and Apache Jena for Java.

5 SocialInsight Prototype Development

The SocialInsight system was created with modularity, adaptability, and expandability
in mind. It consists of three key components: An ontology (composed of an upper and
lower domain-specific one), an ABMS framework, and a scenario and runtime man-
agement system.7 Our approach for using these in a longitudinal simulation-building
effort, for scientific and/or practical purposes, can be considered a fourth component,
although a methodological one.

The following sections encompass the current state of the approach implementation,
including (1) the upper ontology and all of the structures devised to represent an ABM,
(2) the utility of the domain-specific ontology in representing scenarios in social phenom-
ena, using examples from the dataset aforementioned on substance use among youth, (3)
a complete documentation on the current ABM Framework and its composition.

5.1 Approach

A systematic process was employed in the development of SocialInsight, beginning
with: (1) identifying the problem, challenges or limitations the approach aims to address,

7The scenario and runtime management system is currently under development (July 26, 2023) while
initial versions of the other two components have already been produced.
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(2) reviewing existing methodologies and key implementations within the domain, (3)
defining a list of requirements and objectives, including encompassing outcomes, scope,
and target audience.

Our approach addresses two key requirements:

I. To facilitate the continued collaboration among a diverse range of experts from var-
ious disciplines, each contributing unique insights to the target social phenomenon
under investigation.

II. To address the limitations of current ABM implementations, as previously noted
in Section 3, particularly with respect to the integration of new information and
the potential resource-intensive nature of adjustments, which may not be feasible,
given the complexity of the overall systems.

The approach taken to develop the prototype is illustrated in Figure 5, commences
with the establishment of general descriptive terms that encapsulate the fundamental
components of an agent-based model (ABM), encompassing the delineation of agents,
environment, perceptions, decisions, and actions. It is imperative to note that the preva-
lent functions of an ABM are preserved within the codebase; however, the agent, per-
ception, action, and other constituent elements subject to simulation are derived from the
domain-specific ontology. This ontology, in turn, employs the general terms originat-
ing from the upper ontology as a bridge to facilitate seamless integration with the ABM
framework. The ABM framework consists of three primary components, each of which
plays a critical role in the simulation process. The first step involves parsing the types
of agents, their attributes, behaviors, and relationships from the domain-specific ontol-
ogy. Once this data has been parsed and all of the agent types and elements have been
created, they are passed to the Sim-Initializer component, which instances the agents and
the environment. Lastly, the Sim-Controller component takes in the instances and runs
a simulation for a pre-defined number of iterations, producing data on the status of the
population at the end of the simulation. This data is evaluated in the verification process
to assess the accuracy and results through comparison with empirical data, and assessed
by domain experts.

5.2 Tools & Technologies

The implementation of the approach relied on several key tools and technologies, given
the integral involvement of ontology development and an ABM framework in the process.

We use RDF and Turtle syntax for encoding ontologies, GraphDB for managing and
querying RDF data, Java for programming the ABM framework, and Apache Jena to
load data in the framework from the ontologies. We describe the assumptions for these
choices below. Steps to verify, validate, and test the approach are presented at the end.

The selection of the requisite tools and technologies was grounded in a set of care-
fully considered criteria (see Section 4). Primarily, their conventional usage and histor-
ical precedence in the context of the approach was a determinant factor. This criterion
was predicated on the premise that the long-established tools have already proven their
efficacy and robustness in similar applications, ensuring reliability and accuracy in the
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Figure 5: llustration of the iterative process involved in the ontology-driven agent-based
modeling approach. The upper ontology is first designed to generate general descrip-
tive terms, which are then employed in the creation of a domain-specific ontology that
describes the phenomenon of interest. The Ontology-Parser component in the ABM
Framework parses the information contained in the domain-specific ontology to iden-
tify element types that are to be simulated. The Sim-Initializer component instantiates
instances of the elements previously created and passes them to the Sim-Controller for
simulation. Following the completion of the simulation, the resulting data is outputted
and compared against empirical data and by domain experts. Feedback from the verifi-
cation process is used to fine-tune the domain-specific ontology and ABM framework,
with the aim of improving the accuracy and effectiveness of the simulation.

present context. Furthermore, these tools and technologies were chosen due to their
well-documented nature and the relative ease of application in the current thematic con-
text, ensuring a smooth operational process, minimizing potential bottlenecks associated
with complexities in tool deployment or incompatibilities with the existing system. Fi-
nally, a significant consideration in the selection process was the potential for seamless
integration of the chosen tools and technologies with the existing modules, as well as
their adaptability to accommodate future modules. This foresight was fundamental to
future-proofing the system, ensuring its sustainability, and maintaining flexibility in ac-
commodating technological evolution or enhancements to the approach.

The Resource Description Framework (RDF) was selected as the fundamental frame-
work for conceptual representation in the development of the ontologies. This choice
stems from its extensive and enduring utilization, as well as its provision of numerous
essential properties and relationships. The Turtle syntax was chosen for encoding the
relationships between concepts in the form of triples for numerous reasons including
human-readability, compatibility with RDF, expressive power, and its tool support.
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GraphDB was chosen to store, manage and query the RDF data as it is readily acces-
sible and provides a comprehensive overview and detailed assessment of the ontologies,
allowing for the communication of progress on the ontologies through visual and inter-
active graphs, and enabling figures to be effortlessly produced for this thesis.

Java was selected as the programming language for the ABM framework due to its
object-oriented nature, which inherently aligns with the structure of ABMs (Railsback &
Grimm, 2019), providing a robust and flexible podium for simulation implementation, as
well as fostering the development of a modular and scalable framework. Additionally,
Java features Apache Jena (McBride, 2001), a well-documented and consistently updated
library for ontology management. Apache Jena facilated the creation of an RDF model
within the ABM framework, enabling the loading of information from the ontologies
and the execution of queries for relevant ABM components using the SPARQL query
language, which is also employed in GraphDB. Facilitating the development, verification
and testing of query outcomes by first previewing the query results in GraphDB, and
subsequently transferring these queries for use by Apache Jena.

In conclusion, the selection of tools and technologies was based on a careful consid-
eration of historical precedence, well-documented applications, ease of use, and adapt-
ability, thereby ensuring a robust, reliable, and flexible implementation of the approach.

5.3 Upper Ontology Structure & Principles

The development of the upper-ontology followed an iterative and systematic approach.
The initial step involved the formulation of a highly general term serving as the superclass
for all other classes. Subsequently, the focus shifted towards determining the represen-
tation of agents and identifying the essential properties required for the initial iteration
of our approach. Furthermore, careful consideration was given to discerning the types of
agents that were fundamental and applicable across diverse simulation themes grounded
in social phenomena.

The first term in the upper ontology is Thing, which serves as the most general and
all-encompassing term from which other classes may inherit. Consequently, it functions
as the superclass for all classes within the ontology. As of the current version of the upper
ontology, there are no other terms between Thing and Agent, however, in the future more
terms can and may be added. Agent is a subclass of Thing possessing properties such
as Parameter, Perception, and Action. Parameters embody the variables intrinsic to an
agent, including characteristics like age, height, and any other properties that potentially
impact the agent’s behavior. Parameter is also formulated as a class, encompassing min-
imum and maximum value, and name as its constituent properties. Parameters are instru-
mental in the agent-based modelling of a phenomenon, as they not only affect the agent’s
behavior during runtime but also contribute to the delineation of population composition.
This distinction of populations is, in part, derived from the unique characteristics of the
constituent individuals.

In our upper ontology, agents are currently further divided into Autonomous and Non-
Autonomous. The reason for this distinction lies in the types of actions these agents may
implement and the fact that in many ABMs, infrastructures and objects may be consid-
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ered to be agents. Autonomous agents may change their location, acquire and consume
resources, and in future iterations implement other actions that humans or animals may
implement. Figure 6 illustrates the structure of components mentioned to this point, as
well as an example of how Human, Object, and Place classes may be added through the
domain-specific ontology.

Figure 6: High-level structural representation of agents in the upper ontology, accompa-
nied by example usage of the representation of agent types Human, Object, and Place
within the domain-specific ontology. Arrows denote the existence of a relationship from
a subject (originating) to an object (terminating), with the relationship specified along
the arrow. Red signifies classes, yellow are subclasses of the class Action, and green
indicates properties.

The next key term to describe are the available actions to the agent. Actions refer to
the behaviors or activities agents may perform within the simulation environment. The
selection of an action (decision-making) is guided by the internal state of an agent, previ-
ously perceived information, and interactions with other agents. In light of the substantial
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interdependence between actions and decision-making processes, decisions are not de-
lineated as a distinct term. Rather, decision-making is encapsulated by the components
considered in the computation of the final action value. The action value, in turn, serves
as the determining factor in selecting the appropriate action for execution at a given time,
and is a function of the following components:

• Satisfied pre-conditions: The availability of certain actions requires the fulfillment
of specific pre-conditions, although the action may not be available at that time,
due to its high action value, the agent may choose to satisfy the pre-conditions (or
wait for them to be satisfiable, in the case of time) , with the plan of making the
action available for execution. Pre-conditions can be of type location, time, and
resource (e.g., execute the action of BUY_DRINK the agent must be located within
a store, and to move to the store, the store must be open).

• Parameter factors and coefficients: Factors that are parameters of the agent which
influence the tendency (positively) or hesitancy (negatively) to implement an action
(e.g., the act of greeting another agent may be contingent upon the current mental
state, wherein anxiety may exert a negative influence on predisposition), these are
paired with assigned coefficients in the domain-specific ontology.

• State factors and coefficients: Antecedent events, or actions that have produced a
state may influence the propensity to execute an action; similar to factors, these are
paired with coefficients in the domain-specific ontology.

• Commitment: Commitments are obligations or promises to oneself or other agents.
In the proposed framework, these commitments are temporally bounded, the exe-
cution of the associated action must be accomplished within a specified time frame
while restraining the implementation of any potentially conflicting actions until the
designated period has elapsed (e.g., the action of moving to school is tied to the
commitment of attending school, adherence to the commitment entails refraining
from movement to locations outside the school premises during the class period).
Commitments may be pre-defined or initialised at run-time.

It is noteworthy that, while these components contribute to the final action value, not
all actions require pre-conditions, factors, states, or commitments in their composition.
However, to enhance the likelihood of its selection from the available set of actions, it is
advisable for the action to be influenced by at least one of these components, as it would
in a real-world scenario. This consideration ensures a more comprehensive and dynamic
representation of agent behaviors within the simulation environment, accounting for the
diverse factors that may impact decision-making processes. A complete graph of the
components pertaining to the class Action can be found in Figure 7.

Presently, the upper ontology delineates three distinct categories of actions: (1) Move-
ment, (2) Resource Management, and (3) General, these categories differ in the type of
state produced and state manipulation as follows:

1. Movement: an agent changes their position within the simulation space, resulting
in a new location state.

2. Resource Management: the acquisition and consumption of resources previously
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acquired; these items are stored in the resource state. For an item to be consumed,
it must reside in the resource state (pre-condition); upon executing the consump-
tion action, the item’s quantity is reduced by some value indicated in the domain-
specific ontology.

3. General: any action which is not of type (1) or (2). These actions may be commu-
nication with other agents or any others considered in the phenomenon of study,
the states produced by these actions are inserted into a history stack of states.

In addition to being influenced by various elements, actions may also yield effects
upon execution. As previously noted, these effects may encompass the generation of
new states or modification of pre-existing ones. Furthermore, actions may produce new
commitments and emit messages (perceptions) to proximate agents or designated cohorts
within the simulation environment.

As previously described, parameters serve as crucial components in ABMs, signifi-
cantly influencing the agents’ decision-making process and subsequent behavior. Within
our framework, each agent’s parameters are assigned an initial value prior to the start of
the simulation, and these values may undergo alterations during run-time. Such modifi-
cations transpire due to known interrelations between parameters and other parameters,
the perception of messages, and the execution of actions. Consequently, the upper on-
tology conceptualizes the following relationship pairs: parameter-parameter, perception-
parameter, and action-parameter.

Parameter-parameter relationships entail that a variation in one parameter (the sub-
ject) influences the value of another parameter (the object) via a specific function. Within
the domain-specific ontology, any given parameter may possess a relationship with nu-
merous other parameters governed by distinct functions. Parameters can thus maintain
relationships characterized by an ordered sequence of objects and functions. In these
functions, keywords such as SCURRENT, SPREVIOUS, and OCURRENT may be em-
ployed, representing the subject’s (the parameter that has the relationship to others) cur-
rent value, the subject’s previous value, and the object’s (parameters in the object se-
quence) current value, respectively. Furthermore, mathematical operators are permissible
within these functions, which are expressed using post-fix notation to maintain a rigorous
representation.

Perception-parameter relationships entail that when an agent receives a certain mes-
sage described in the domain-specific ontology, the parameters associated in the relation-
ship will change by some function, much like in the parameter-parameter relationship,
the functions are written in post-fix notation, but the only keyword that can currently be
employed is OCURRENT, this is because perceptions do not have a value attached to
them as of the current implementation.

Action-parameter relationships are triggered when an action is executed, where the
objects and functions are described in the same way as perception-parameter relation-
ships. The following Figure 8 was taken using GraphDB upon loading the upper ontol-
ogy, where objects are a sequence (rdf:Seq) of Parameter, and functions are a sequence
of String.

Following the annotation of the aforementioned general terms, the subsequent phase
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Figure 7: Complete list of properties of the class Action in the upper ontology. Blue
circles are the properties of the class Action, red circles signify the class type the property
belongs to, and yellow is the property containing a sequence of actions, namely agent
actions is a list of Action.

involved was constructing a domain-specific ontology that employed these terms to rep-
resent a particular domain.

5.4 Domain-specific Ontology Structure

Prior to employing the domain-specific ontology, it is crucial to comprehensively exam-
ine the target phenomenon to determine its representation within an ABM. This can be
accomplished by utilizing the ODD protocol, which provides a structured approach for
assessing and describing the essential components of the model. Once the structure of the
ABM has been decided, the first step is determining whether the agents specified belong
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Figure 8: Illustration of the connections between parameter and parameter-
parameter (paramRelationship), perception-parameter (perceptionRelationship), and
action-parameter (actionRelationship) relationships. Red circles signify classes. The
label range on the arrow signifies that the subject (originating) is of the variable type of
the object (terminating), and domain indicates that the subject is an attribute/property of
the object.

to the Autonomous or Non-autonomous classes represented in the upper ontology. For
example, one may opt to represent locations as agents within the simulation. In this case,
Place would serve as a class, inheriting from the Non-autonomous class since locations
cannot alter their position or acquire or consume resources. Within the context of sub-
stance use among youth, an example of such a place is a school. Schools would inherit
from the Place class and possess actions, such as RING_BELL, which are triggered upon
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perceiving specific times of the day (e.g., ‘8 a.m.’ for when class starts or noon for lunch
breaks), this example is illustrated in Figure 9.

Substance use among youth represents a sufficiently specific domain, highlighting the
significance of representing youth for example through the Child agent type. Although
this agent type could be a direct subclass of Autonomous, it may be more appropriate to
designate Child as a subclass of Human, which, in turn, is a subclass of Autonomous.
This distinction might be made to facilitate the creation of other agent types that share
some of the attributes (Parameters, Perceptions, Actions) present in Child, but are not
of the type Child or inherit from it. For that reason, the domain experts may opt to cre-
ate the Human class, assigning the attributes specific to Human and then subsequently
to Child. An instance of this distinction, illustrated in Figure 10, and in the context of
substance use are the Parameter, Perception, and Action pertaining to smoking, such as
propensity_to_smoke, smoking, and CONSUME_CIGARETTE respectively. A child
may inherit those attributes from Human, and may have other specific to Child, such as
the parameter grades, and the action move_to_school with a commitment tied to attend-
ing classes.

In the context of the substance use example, we might want to represent the rela-
tionship between a child’s frequency of attending sports activities and their propensity to
smoke (Kristjansson et al., 2021). Using the general terms from the upper ontology, this
relationship can be represented in two distinct ways within the domain-specific ontology:

1. If the designer chooses to include propensity to smoke as an attribute, this rela-
tionship can be represented as a parameter-parameter relationship, as illustrated in
Figure 11. In this case, we would create two parameters in the domain-specific
ontology: sports frequency and propensity to smoke. The parameter relationship
would be assigned to sports frequency, with the object list containing propensity
to smoke, and the functions list incorporating a function representing the effects
of sports frequency on propensity to smoke. Subsequently, propensity to smoke
would act as a parameter factor in the action CONSUME_CIGARETTE.

2. Alternatively, if the designer opts not to include propensity to smoke as an at-
tribute, sports frequency would directly serve as a parameter factor with a corre-
sponding coefficient in the action CONSUME_CIGARETTE allowing in turn for
other parameter factors to be included in the calculation of the action value for
CONSUME_CIGARETTE, as seen in Figure 12.

Option #1 may prove beneficial for representing bivariate models, while option #2
is better suited for multivariate models. It is essential to note that directly inputting val-
ues from empirical data into these models may result in biased outcomes. The primary
objective of employing these different relationship representations is to replicate simi-
lar effects observed in empirical data, such as those found in bivariate and multivariate
models.

Perception relationships can be employed to represent the effects that arise when an
agent perceives a particular event or behavior. In the context of substance use, one fre-
quently examined variable is the number of peers who engage in substance use around
the individual under investigation (Kristjansson et al., 2013). This interaction can be con-
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Figure 9: How to represent School in the domain-specific ontology as an agent
type, inheriting specifically from Place which in turn inherits from NonAutonomous,
where school contains actions RINGFIRSTBELL (ringing the bell at 8 a.m.) and
RINGLUNCHBELL (ringing the bell at noon for lunch). To enforce that this action
is chosen, a commitment is added for the periods at which these actions should be exe-
cuted.

ceptualized as the effect of perceiving someone the agent is acquainted with, partaking
in activities such as smoking cigarettes, consuming alcohol, or using other substances.

In the ontology, we can represent the perception smoking as a type of perception
that is generated when an agent carries out the action CONSUME_CIGARETTE and
is subsequently perceived by neighboring agents. We would then create smoking as an
instance of perception and associate it with the perception produced by the action CON-
SUME_CIGARETTE. This perception would possess a perception relationship where
the objects list contains the parameter it influences, such as the parameter
propensity_to_smoke. Consequently, an agent whose friends frequently smoke in their
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Figure 10: Depiction of how to use the upper ontology terms to describe the Child
agent in the domain of substance use in the domain-specific ontology, with parame-
ters timeSpentWithParents, sportsFrequency, grades, childAge, and the action of mov-
ing to school, and inheriting the parameter propensityToSmoke, the actions CON-
SUME_CIGARETTE and ACQUIRE_CIG, and the perception of someone smoking
from the agent type Human.

presence would experience an increase in their parameter propensity_to_smoke.
As mentioned in the previous section, actions can possess various attributes, includ-

ing commitment factor, preconditions, parameter factors, state factors, commitment pro-
duced, state produced, and perception produced. While not all actions will make use of
these attributes, the following list outlines cases in which the designer may choose to
include them:

• Commitment factor: This attribute is relevant when the action is part of an agent’s
routine, such as the commitment to attend school on weekdays from 8 AM to 3
PM, or when the agent has committed to execute the action at a specific time of
day.

• Preconditions: These are necessary conditions for an action to be executed, such as
requiring a specific location (e.g., purchasing cigarettes can only be done at a store
that sells them), possession of certain resources (e.g., needing a school ID card to
enter the school or sufficient quantity of a resource for consumption), or specific
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Figure 11: Illustration of how to depict option #1 for the representation of the effects
of sports frequency on the propensity to smoke, where propensity is represented as a
Parameter, and is in turn affected by the sports frequency, with its corresponding function
(sportsFunctions) on the right-hand side in the figure.
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Figure 12: Illustration of how to depict option #2 for the representation of the effects
of sports frequency on the propensity to smoke, where propensity is represented through
the parameter factors sportsFrequency and timeSpentWithParents and their designated
parameterWeights (coefficients) in the CONSUME_CIGARETTE action.

times of day (e.g., stores being open only during certain hours).
• Parameter factors: The decision to perform an action is affected by certain param-

eters, as demonstrated in empirical studies, protective factors against daily smok-
ing include sports frequency, time spent with parents, parental monitoring, and
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parental support (Kristjansson et al., 2021).
• State factors: The influence of certain memory states on decision-making. For

instance, an agent’s memory of a recent argument with their parents may affect
subsequent decisions.

• Commitment produced: This attribute comes into play when executing an action
generates a commitment, such as accepting a friend’s invitation to their house,
which produces a commitment to carry out the action of visiting at the proposed
time.

• State produced: This attribute is applicable when an action results in a new state
for the executing agent, such as consuming a specific amount of alcohol leading to
the state of inebriation.

• Perception produced: This attribute is relevant when executing an action generates
a perception or message for other agents that has a significant and represented
impact in the ontology, such as a perception relationship to a parameter.

The action components, in the list above, collectively contribute to the computation of the
final action value for each available action in the decision-making step, which is executed
every time the agent makes a choice. Consequently, the agent selects the action with the
highest value or opts for inaction if the available actions yield negative values. This
approach ensures that the agent’s decisions are driven by the most favorable outcomes
based on the current context and available information.

6 Evaluation

In accordance with the evaluative criteria delineated and the requirements proposed in
Chapter 5, the assessment of results includes five key dimensions: adaptability, extensi-
bility, accessibility, implementation of scenarios, and scalability. As a proof-of-concept,
the prototype can only support a certain limited level of evaluation on all of these dimen-
sions, and most of them have only been evaluated to a first minimal level. The exception
is the dimension of scenario implementation, which is detailed in Section 6.4, and scala-
bility, in Section 6.6.

6.1 Adaptability

The robustness of the implementation is exhibited in its capacity to accommodate mod-
ifications pertaining to both numerical and conceptual representations of a target phe-
nomenon’s components. As described in Section 5.4, this adaptability is manifested
through the multifaceted ways in which domain experts are enabled to represent con-
cepts and their interactions. Furthermore, the use of Turtle syntax facilitates the ease
with which the component values can be altered.
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6.2 Extensibility

In its current form, the approach permits the incorporation of additional components
into the domain-specific ontology and the upper-ontology. This first can be achieved by
aligning them with the pre-established upper-ontology general terms, and the second by
adding additional components and changing the structure of the upper-ontology. While
there is no cap on the number of components that domain-experts may input, the limita-
tion arises in the unique ways in which the target phenomenon can be represented within
the ABM framework.

6.3 Accessibility

A heightened degree of accessibility is conferred by the segregation of domain-specific
content from the ABM implementation. Contrary to contemporary implementations that
necessitate adjustments to the codebase for alterations in the representation of domain
knowledge, the proposed approach and implementation provides a mechanism for these
adjustments to be realized without directly manipulating the codebase in the ABM frame-
work. This is facilitated by the provision for designers to modify domain knowledge
through changes in the ontologies.

6.4 Scenario Implementation

The scenarios delineated in Chapter 5 were examined with respect to their representation
utilizing the upper-ontology concepts and subsequent execution within the simulation
framework:

1. Substance consumption. Utilizing concepts from the upper ontology, substance
consumption can be represented as an action of type Consume (resource manage-
ment). Moreover, multiple Consume actions can be specified for the same resource
or substance, with variations in the quantity consumed. These variations and the
choice of which action to implement, may depend on specific factors, and the out-
comes of consuming different amounts may yield increased or distinct effects.

2. Routine activities. These can be represented by a commitment and its associated
action. In the current implementation, commitments introduce a modifier to the ac-
tion value associated with an upcoming commitment, enhancing the likelihood of
the action’s execution when its designated time arrives (through its commitment’s
time period). Additionally, while engaged in a commitment, other movement ac-
tions receive a negative modifier, as they would interfere with the completion of
the ongoing commitment. Although negative modifiers are applied, other actions
may still be considered if their action components increase their propensity, more
so than the negative modifier decreases it.

3. Protective and risk factors of varying importance and effects. Numerous meth-
ods are available for representing factors using the upper ontology terms. One
approach is through their direct impact on other parameters via x-parameter rela-
tionships (where x can be parameter, perception, or action), where the nature of the
effect is portrayed in the associated negative or positive function. Another method
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involves their influence on the propensity to execute an action through parameter or
state factors, affecting the final action value with a positive or negative coefficient.

4. Effects of peer activities on agent behavior. Peer activities are perceived through
perception items and can impact agent parameters specified in the domain-specific
ontology via perception-parameter relationships, consequently affecting the behav-
ior or chosen actions for that agent.

5. Planning. Planning is accomplished through existing preconditions. Although
preconditions associated with an action may not be fulfilled at the time of deci-
sion, if the action value for that action is the highest among all available options,
the agent will attempt to satisfy the existing preconditions in the following order:
resource acquisition, movement, and time. While fulfilling preconditions, the plan
to implement the final action may be disrupted if any event altering the parameters
or other components associated with the final action value occurs, such as an agent
receiving an invitation to play basketball with friends while en route to purchase
cigarettes.

All in all, the hours spent on this implementation of a model of peer pressure in the
present state of the system counted around 30 hours total for the social science experts
and 10 hours for the programmers. It is estimated that about 4 hours of that total was
spent on software bugs. For the social scientists, preparation time was around 4 hours,
meetings with programmers was 5 hours, and 3 hours was spent on experimentation and
reworking the formulas.

Given that the system is still in beta, these are very encouraging numbers, especially
considering that no graphical user interfaces were available for the work and the domain
experts are not programmers and had never even seen the system before. These results
give much reason to continue along the same path.

6.5 Usability of the Present Prototype

There are three main end-user categories for the ultimate version of the SocialInsight
framework. The largest group are policy makers, the second largest are scientists, with
three subgroups (social scientists, psychologists and biologists); the smallest group of
end-users is ontology and simulation experts, who expand the system from the perspec-
tive of general use across the other two user groups. The present implementation most
directly allows for an evaluation with one of these groups, namely, social scientists.

To test the current implementation for end users in the sociology scientist group, an
initial development of a model of peer pressure was undertaken. The analysis and usabil-
ity evaluation was performed by a small group of developers and two domain experts.
We took a breadth-first approach, testing both the use of the ontologies, implementation
of theory, running the system, and iterating over the design.

The peer pressure model spanned two levels of detail, social and psychological, with
a strong emphasis on the former, and involved the creation and experimentation of several
simulation agents. Our report on this initial evaluation is detailed below, providing an
illustrative example of its present capabilities and areas for enhancement.
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1. Initial Learning Curve. The effort required to begin using the SocialInsight ABM
effectively is comparable to learning any specialized research methodology. Users
should ideally have a solid grounding in the theoretical principles underlying their
research, along with a basic understanding of ABM operations as tools for scien-
tific inquiry. The introduction of ontological structures within SocialInsight adds
a layer of complexity, requiring additional effort to master both practically and
methodologically. Supporting documentation is provided to ease this learning pro-
cess, but users should expect a learning curve similar to that of e.g., mastering
multiple linear regression—understanding the methodology first, then its applica-
tion, over the span of a few weeks of study.

2. Integration & Experimentation. The framework allows for relatively straightfor-
ward manipulation of parameters and variables, making the creation of new exper-
imental conditions based on emerging hypotheses easier. The logical structure of
ontologies and the sub-model of peer influence is well-documented, facilitating the
design of experiments and navigation between different layers of the ABM.

3. Interface Complexity & Technical Support. The current user interface can be
intimidating for non-technical users, especially those without prior coding experi-
ence. The system is still in a Proof of Concept (PoC) phase, which makes under-
taking complex research projects challenging without technical support. Enhanced
user guidance through example documents and clearer explanations of the cod-
ing requirements would improve accessibility and usability. On our agenda for
the next version of the framework are a more intuitive setup process that includes
visual examples that clarify syntax and interaction between model components.

4. Output Management & Analysis. Although the transparency of agent actions
and decision-making processes in the outputs is a strong point, the current output
format makes quantitative analysis and interpretation cumbersome. Improvements
in the output interface, such as including plotting and other visual representations
of data will significantly enhance the ability to verify model accuracy and interpret
results, and to do so efficiently.

5. Documentation and Transparency Needs. Greater transparency in the ontology
design is necessary in general, and particularly concerning the default mathemat-
ical formulas deployed. Detailed and specific explanations of all methodological
components within SocialInsight, such as the layering of ontologies and their op-
erational dynamics, are crucial for users to fully leverage the framework’s capabil-
ities. This is something that will be addressed in future versions with a graphical
user interface.

6.6 Scalability

The existing ABM framework demonstrates proficiency in executing simulations, as out-
lined in the aforementioned scenarios and in the domain-specific exemplars presented in
Section 5.4. The execution time complexity is relatively low, as illustrated in Table 1,
where executing a simulation with 10k agents for a total of 93 days (approximately 3
months) takes 68.166 seconds to run. In the context of the substance use and other phe-

35



nomenon in youth, domain experts may choose to examine the behaviors and outcomes
of considerably larger populations, for example with 80k interacting children.

Nr. Agents Iterations (days) Total Loop Iterations Execution Time (ms)
1000 10 170 3041
1000 31 527 4254
10000 31 527 25238
10000 93 1581 68166
80000 93 1581 635590

Table 1: Execution time in milliseconds taken for an increasing amount of agents and
iterations (days), where the total number of loop iterations is the number of iterations
multiplied by the total amount of hours per day looped by, which is currently 17 hours.

Our approach not only supports large-scale simulations in its current form but also
provides a solid foundation for future optimization and scalability. Scalability provi-
sions include for instance extensions to concurrency, where non-neighboring agents can
engage in parallel interactions with their surrounding environment and other agents. Ad-
ditionally, overlay mechanisms may be introduced to reduce time complexity.

7 Conclusions & Future Work

The SIMLife project, and the current implementation of the SocialInsight framework pro-
totype, are in an early phase. The methodology proposed encompasses initial ontological
structures for representing agents, their parameters, perceptions, available actions, and
their subsequent interplay and impact on agent behavior. Although a variety of general
conceptual representations for social systems have been proposed within the context of
ABMs in prior related work, our approach aims to model a variety of social systems,
while enabling the re-usability of existing mechanisms and components across distinct
phenomena. In order to achieve these objectives, a list of requirements was formulated
for the system, from which it was concluded that the system required a high degree of
modularity, not only in the ABM implementation but also in its ancillary components, ex-
tensibility accommodating modifications to the model, accessibility, and ability to scale
the simulation environment without interfering with domain knowledge provided.

Our current approach has been achieved through a single iteration of the cycle de-
lineated in Chapter 5. To optimize the outcome and improve the approach as a whole,
additional iterations will be conducted. Future work includes implementing the approach
with more comprehensive and complete scenarios, verifying the ontologies further, as
well as facilitating their extension by domain experts in the face of new research. As
we develop a more complete framework, we expect to raise the degree of accuracy of its
results upon comparison with findings from empirical studies. Finally, in the interest of
facilitating the collaboration of a growing variety of domain experts in both the usage of
the system and extension of the foundational knowledge base, the development of sev-
eral graphical user interfaces is crucial. Paired with the modular nature of our approach,
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we are confident that optimizing accessibility at many levels by means of a graphical
user interface, tailored to the research and usability needs of domain experts, will yield
significant improvements across the framework.

Given that the current implementation is still in beta, these are very encouraging
results, giving much reason to be optimistic and continue this work along the same path,
to fulfill the complete vision for the project.
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